[ 
https://issues.apache.org/jira/browse/HBASE-26353?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Andrew Kyle Purtell updated HBASE-26353:
----------------------------------------
    Description: 
ZStandard supports initialization of compressors and decompressors with a 
precomputed dictionary, which can dramatically improve and speed up compression 
of tables with small values. For more details, please see [The Case For Small 
Data 
Compression|https://github.com/facebook/zstd#the-case-for-small-data-compression].
 

If a table is going to have a lot of small values and the user can put together 
a representative set of files that can be used to train a dictionary for 
compressing those values, a dictionary can be trained with the {{zstd}} command 
line utility, available in any zstandard package for your favorite OS:

Training:
{noformat}
$ zstd --maxdict=1126400 --train-fastcover=shrink \
    -o mytable.dict training_files/*
Trying 82 different sets of parameters
...
k=674                                      
d=8
f=20
steps=40
split=75
accel=1
Save dictionary of size 1126400 into file mytable.dict
{noformat}

Deploy the dictionary file to HDFS or S3, etc.

Create the table:

{noformat}
hbase> create "mytable", 
  ... ,
  CONFIGURATION => {
    'hbase.io.compress.zstd.level' => '6',
    'hbase.io.compress.zstd.dictionary' => 'hdfs://nn/zdicts/mytable.dict'
  }
{noformat}

Now start storing data. Compression results even for small values will be 
excellent.

Note: Beware, if the dictionary is lost, the data will not be decompressable.

  was:
ZStandard supports initialization of compressors and decompressors with a 
precomputed dictionary, which can dramatically improve and speed up compression 
of tables with small values. For more details, please see [The Case For Small 
Data 
Compression|https://github.com/facebook/zstd#the-case-for-small-data-compression].
 

If a table is going to have a lot of small values and the user can put together 
a representative set of files that can be used to train a dictionary for 
compressing those values, a dictionary can be trained with the {{zstd}} command 
line utility, available in any zstandard package for your favorite OS:

Training:
{noformat}
$ zstd --maxdict=1126400 --train-fastcover=shrink \
    -o mytable.dict training_files/*
Trying 82 different sets of parameters
...
k=674                                      
d=8
f=20
steps=40
split=75
accel=1
Save dictionary of size 1126400 into file mytable.dict
{noformat}

Deploy the dictionary file to HDFS or S3, etc.

Create the table:

{noformat}
hbase> create "mytable", 
  ... ,
  CONFIGURATION => {
    'hbase.io.compress.zstd.level' => '6',
    'hbase.io.compress.zstd.dictionary' => true,
    'hbase.io.compress.zstd.dictonary.file' =>  'hdfs://nn/zdicts/mytable.dict'
  }
{noformat}

Now start storing data. Compression results even for small values will be 
excellent.

Note: Beware, if the dictionary is lost, the data will not be decompressable.


> Support loadable dictionaries in hbase-compression-zstd
> -------------------------------------------------------
>
>                 Key: HBASE-26353
>                 URL: https://issues.apache.org/jira/browse/HBASE-26353
>             Project: HBase
>          Issue Type: Sub-task
>            Reporter: Andrew Kyle Purtell
>            Assignee: Andrew Kyle Purtell
>            Priority: Minor
>             Fix For: 2.5.0, 3.0.0-alpha-2
>
>
> ZStandard supports initialization of compressors and decompressors with a 
> precomputed dictionary, which can dramatically improve and speed up 
> compression of tables with small values. For more details, please see [The 
> Case For Small Data 
> Compression|https://github.com/facebook/zstd#the-case-for-small-data-compression].
>  
> If a table is going to have a lot of small values and the user can put 
> together a representative set of files that can be used to train a dictionary 
> for compressing those values, a dictionary can be trained with the {{zstd}} 
> command line utility, available in any zstandard package for your favorite OS:
> Training:
> {noformat}
> $ zstd --maxdict=1126400 --train-fastcover=shrink \
>     -o mytable.dict training_files/*
> Trying 82 different sets of parameters
> ...
> k=674                                      
> d=8
> f=20
> steps=40
> split=75
> accel=1
> Save dictionary of size 1126400 into file mytable.dict
> {noformat}
> Deploy the dictionary file to HDFS or S3, etc.
> Create the table:
> {noformat}
> hbase> create "mytable", 
>   ... ,
>   CONFIGURATION => {
>     'hbase.io.compress.zstd.level' => '6',
>     'hbase.io.compress.zstd.dictionary' => 'hdfs://nn/zdicts/mytable.dict'
>   }
> {noformat}
> Now start storing data. Compression results even for small values will be 
> excellent.
> Note: Beware, if the dictionary is lost, the data will not be decompressable.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to