[
https://issues.apache.org/jira/browse/HIVE-9713?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Sushanth Sowmyan updated HIVE-9713:
-----------------------------------
Fix Version/s: (was: 1.2.0)
> CBO : inefficient join order created for left join outer condition
> ------------------------------------------------------------------
>
> Key: HIVE-9713
> URL: https://issues.apache.org/jira/browse/HIVE-9713
> Project: Hive
> Issue Type: Bug
> Components: CBO
> Affects Versions: 0.14.0
> Reporter: Mostafa Mokhtar
> Assignee: Laljo John Pullokkaran
>
> For the query below which is a subset of TPC-DS Query 80, CBO joins
> catalog_sales with catalog_returns first although the CE of the join is
> relatively high.
> catalog_sales should be joined with the selective dimension tables first.
> {code}
> select cp_catalog_page_id as catalog_page_id,
> sum(cs_ext_sales_price) as sales,
> sum(coalesce(cr_return_amount, 0)) as returns,
> sum(cs_net_profit - coalesce(cr_net_loss, 0)) as profit
> from catalog_sales left outer join catalog_returns on
> (cs_item_sk = cr_item_sk and cs_order_number = cr_order_number),
> date_dim,
> catalog_page,
> item,
> promotion
> where cs_sold_date_sk = d_date_sk
> and d_date between cast('1998-08-04' as date)
> and (cast('1998-09-04' as date))
> and cs_catalog_page_sk = cp_catalog_page_sk
> and cs_item_sk = i_item_sk
> and i_current_price > 50
> and cs_promo_sk = p_promo_sk
> and p_channel_tv = 'N'
> group by cp_catalog_page_id
> {code}
> Logical plan from CBO debug logs
> {code}
> 2015-02-17 22:34:04,577 DEBUG [main]: parse.CalcitePlanner
> (CalcitePlanner.java:apply(743)) - Plan After Join Reordering:
> HiveProject(catalog_page_id=[$0], sales=[$1], returns=[$2], profit=[$3]):
> rowcount = 10590.0, cumulative cost = {8.25242586823495E15 rows, 0.0 cpu, 0.0
> io}, id = 1395
> HiveAggregate(group=[{0}], agg#0=[sum($1)], agg#1=[sum($2)],
> agg#2=[sum($3)]): rowcount = 10590.0, cumulative cost = {8.25242586823495E15
> rows, 0.0 cpu, 0.0 io}, id = 1393
> HiveProject($f0=[$14], $f1=[$5], $f2=[coalesce($9, 0)], $f3=[-($6,
> coalesce($10, 0))]): rowcount = 1.368586152225262E8, cumulative cost =
> {8.25242586823495E15 rows, 0.0 cpu, 0.0 io}, id = 1391
> HiveJoin(condition=[=($3, $17)], joinType=[inner]): rowcount =
> 1.368586152225262E8, cumulative cost = {8.25242586823495E15 rows, 0.0 cpu,
> 0.0 io}, id = 1508
> HiveJoin(condition=[=($2, $15)], joinType=[inner]): rowcount =
> 2.737172304450524E8, cumulative cost = {8.252425594517495E15 rows, 0.0 cpu,
> 0.0 io}, id = 1506
> HiveJoin(condition=[=($1, $13)], joinType=[inner]): rowcount =
> 8.211516913351573E8, cumulative cost = {8.252424773349804E15 rows, 0.0 cpu,
> 0.0 io}, id = 1504
> HiveJoin(condition=[=($0, $11)], joinType=[inner]): rowcount =
> 1.1296953399027347E11, cumulative cost = {8.252311803804096E15 rows, 0.0 cpu,
> 0.0 io}, id = 1418
> HiveJoin(condition=[AND(=($2, $7), =($4, $8))],
> joinType=[left]): rowcount = 8.252311488455487E15, cumulative cost =
> {3.15348608E8 rows, 0.0 cpu, 0.0 io}, id = 1413
> HiveProject(cs_sold_date_sk=[$0], cs_catalog_page_sk=[$12],
> cs_item_sk=[$15], cs_promo_sk=[$16], cs_order_number=[$17],
> cs_ext_sales_price=[$23], cs_net_profit=[$33]): rowcount = 2.86549727E8,
> cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1324
> HiveTableScan(table=[[tpcds_bin_orc_200.catalog_sales]]):
> rowcount = 2.86549727E8, cumulative cost = {0}, id = 1136
> HiveProject(cr_item_sk=[$2], cr_order_number=[$16],
> cr_return_amount=[$18], cr_net_loss=[$26]): rowcount = 2.8798881E7,
> cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1327
> HiveTableScan(table=[[tpcds_bin_orc_200.catalog_returns]]):
> rowcount = 2.8798881E7, cumulative cost = {0}, id = 1137
> HiveProject(d_date_sk=[$0], d_date=[$2]): rowcount = 1.0,
> cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1371
> HiveFilter(condition=[between(false, $2,
> CAST('1998-08-04'):DATE, CAST('1998-09-04'):DATE)]): rowcount = 1.0,
> cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1369
> HiveTableScan(table=[[tpcds_bin_orc_200.date_dim]]):
> rowcount = 73049.0, cumulative cost = {0}, id = 1138
> HiveProject(cp_catalog_page_sk=[$0], cp_catalog_page_id=[$1]):
> rowcount = 11718.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1375
> HiveTableScan(table=[[tpcds_bin_orc_200.catalog_page]]):
> rowcount = 11718.0, cumulative cost = {0}, id = 1139
> HiveProject(i_item_sk=[$0], i_current_price=[$5]): rowcount =
> 16000.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1381
> HiveFilter(condition=[>($5, 5E1)]): rowcount = 16000.0,
> cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1379
> HiveTableScan(table=[[tpcds_bin_orc_200.item]]): rowcount =
> 48000.0, cumulative cost = {0}, id = 1140
> HiveProject(p_promo_sk=[$0], p_channel_tv=[$11]): rowcount = 225.0,
> cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1387
> HiveFilter(condition=[=($11, 'N')]): rowcount = 225.0, cumulative
> cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 1385
> HiveTableScan(table=[[tpcds_bin_orc_200.promotion]]): rowcount =
> 450.0, cumulative cost = {0}, id = 1141
> {code}
> Explain plan
> {code}
> STAGE DEPENDENCIES:
> Stage-1 is a root stage
> Stage-0 depends on stages: Stage-1
> STAGE PLANS:
> Stage: Stage-1
> Tez
> Edges:
> Map 1 <- Map 2 (BROADCAST_EDGE)
> Map 3 <- Map 1 (BROADCAST_EDGE)
> Map 4 <- Map 3 (BROADCAST_EDGE), Map 6 (BROADCAST_EDGE), Map 7
> (BROADCAST_EDGE)
> Reducer 5 <- Map 4 (SIMPLE_EDGE)
> DagName: mmokhtar_20150306141010_d8c1b2d5-f05f-4039-8261-a69b6f18a2ac:1
> Vertices:
> Map 1
> Map Operator Tree:
> TableScan
> alias: catalog_sales
> filterExpr: (((cs_sold_date_sk is not null and
> cs_catalog_page_sk is not null) and cs_item_sk is not null) and cs_promo_sk
> is not null) (type: boolean)
> Statistics: Num rows: 286549727 Data size: 65825832570
> Basic stats: COMPLETE Column stats: COMPLETE
> Filter Operator
> predicate: (((cs_sold_date_sk is not null and
> cs_catalog_page_sk is not null) and cs_item_sk is not null) and cs_promo_sk
> is not null) (type: boolean)
> Statistics: Num rows: 285112475 Data size: 7974560516
> Basic stats: COMPLETE Column stats: COMPLETE
> Select Operator
> expressions: cs_sold_date_sk (type: int),
> cs_catalog_page_sk (type: int), cs_item_sk (type: int), cs_promo_sk (type:
> int), cs_order_number (type: int), cs_ext_sales_price (type: float),
> cs_net_profit (type: float)
> outputColumnNames: _col0, _col1, _col2, _col3, _col4,
> _col5, _col6
> Statistics: Num rows: 285112475 Data size: 7974560516
> Basic stats: COMPLETE Column stats: COMPLETE
> Map Join Operator
> condition map:
> Left Outer Join0 to 1
> keys:
> 0 _col2 (type: int), _col4 (type: int)
> 1 _col0 (type: int), _col1 (type: int)
> outputColumnNames: _col0, _col1, _col2, _col3, _col5,
> _col6, _col9, _col10
> input vertices:
> 1 Map 2
> Statistics: Num rows: 2911 Data size: 93152 Basic
> stats: COMPLETE Column stats: COMPLETE
> Reduce Output Operator
> key expressions: _col0 (type: int)
> sort order: +
> Map-reduce partition columns: _col0 (type: int)
> Statistics: Num rows: 2911 Data size: 93152 Basic
> stats: COMPLETE Column stats: COMPLETE
> value expressions: _col1 (type: int), _col2 (type:
> int), _col3 (type: int), _col5 (type: float), _col6 (type: float), _col9
> (type: float), _col10 (type: float)
> Execution mode: vectorized
> Map 2
> Map Operator Tree:
> TableScan
> alias: catalog_returns
> filterExpr: cr_item_sk is not null (type: boolean)
> Statistics: Num rows: 28798881 Data size: 5764329494 Basic
> stats: COMPLETE Column stats: COMPLETE
> Filter Operator
> predicate: cr_item_sk is not null (type: boolean)
> Statistics: Num rows: 28798881 Data size: 456171072 Basic
> stats: COMPLETE Column stats: COMPLETE
> Select Operator
> expressions: cr_item_sk (type: int), cr_order_number
> (type: int), cr_return_amount (type: float), cr_net_loss (type: float)
> outputColumnNames: _col0, _col1, _col2, _col3
> Statistics: Num rows: 28798881 Data size: 456171072
> Basic stats: COMPLETE Column stats: COMPLETE
> Reduce Output Operator
> key expressions: _col0 (type: int), _col1 (type: int)
> sort order: ++
> Map-reduce partition columns: _col0 (type: int),
> _col1 (type: int)
> Statistics: Num rows: 28798881 Data size: 456171072
> Basic stats: COMPLETE Column stats: COMPLETE
> value expressions: _col2 (type: float), _col3 (type:
> float)
> Execution mode: vectorized
> Map 3
> Map Operator Tree:
> TableScan
> alias: date_dim
> filterExpr: (d_date BETWEEN 1998-08-04 AND 1998-09-04 and
> d_date_sk is not null) (type: boolean)
> Statistics: Num rows: 73049 Data size: 81741831 Basic
> stats: COMPLETE Column stats: COMPLETE
> Filter Operator
> predicate: (d_date BETWEEN 1998-08-04 AND 1998-09-04 and
> d_date_sk is not null) (type: boolean)
> Statistics: Num rows: 36524 Data size: 3579352 Basic
> stats: COMPLETE Column stats: COMPLETE
> Select Operator
> expressions: d_date_sk (type: int)
> outputColumnNames: _col0
> Statistics: Num rows: 36524 Data size: 146096 Basic
> stats: COMPLETE Column stats: COMPLETE
> Map Join Operator
> condition map:
> Inner Join 0 to 1
> keys:
> 0 _col0 (type: int)
> 1 _col0 (type: int)
> outputColumnNames: _col1, _col2, _col3, _col5, _col6,
> _col9, _col10
> input vertices:
> 0 Map 1
> Statistics: Num rows: 1456 Data size: 40768 Basic
> stats: COMPLETE Column stats: COMPLETE
> Reduce Output Operator
> key expressions: _col1 (type: int)
> sort order: +
> Map-reduce partition columns: _col1 (type: int)
> Statistics: Num rows: 1456 Data size: 40768 Basic
> stats: COMPLETE Column stats: COMPLETE
> value expressions: _col2 (type: int), _col3 (type:
> int), _col5 (type: float), _col6 (type: float), _col9 (type: float), _col10
> (type: float)
> Execution mode: vectorized
> Map 4
> Map Operator Tree:
> TableScan
> alias: catalog_page
> filterExpr: cp_catalog_page_sk is not null (type: boolean)
> Statistics: Num rows: 11718 Data size: 5400282 Basic stats:
> COMPLETE Column stats: COMPLETE
> Filter Operator
> predicate: cp_catalog_page_sk is not null (type: boolean)
> Statistics: Num rows: 11718 Data size: 1218672 Basic
> stats: COMPLETE Column stats: COMPLETE
> Select Operator
> expressions: cp_catalog_page_sk (type: int),
> cp_catalog_page_id (type: string)
> outputColumnNames: _col0, _col1
> Statistics: Num rows: 11718 Data size: 1218672 Basic
> stats: COMPLETE Column stats: COMPLETE
> Map Join Operator
> condition map:
> Inner Join 0 to 1
> keys:
> 0 _col1 (type: int)
> 1 _col0 (type: int)
> outputColumnNames: _col2, _col3, _col5, _col6, _col9,
> _col10, _col14
> input vertices:
> 0 Map 3
> Statistics: Num rows: 1456 Data size: 180544 Basic
> stats: COMPLETE Column stats: COMPLETE
> Map Join Operator
> condition map:
> Inner Join 0 to 1
> keys:
> 0 _col2 (type: int)
> 1 _col0 (type: int)
> outputColumnNames: _col3, _col5, _col6, _col9,
> _col10, _col14
> input vertices:
> 1 Map 6
> Statistics: Num rows: 486 Data size: 58320 Basic
> stats: COMPLETE Column stats: COMPLETE
> Map Join Operator
> condition map:
> Inner Join 0 to 1
> keys:
> 0 _col3 (type: int)
> 1 _col0 (type: int)
> outputColumnNames: _col5, _col6, _col9, _col10,
> _col14
> input vertices:
> 1 Map 7
> Statistics: Num rows: 243 Data size: 28188 Basic
> stats: COMPLETE Column stats: COMPLETE
> Select Operator
> expressions: _col14 (type: string), _col5
> (type: float), COALESCE(_col9,0) (type: float), (_col6 - COALESCE(_col10,0))
> (type: float)
> outputColumnNames: _col0, _col1, _col2, _col3
> Statistics: Num rows: 243 Data size: 28188
> Basic stats: COMPLETE Column stats: COMPLETE
> Group By Operator
> aggregations: sum(_col1), sum(_col2),
> sum(_col3)
> keys: _col0 (type: string)
> mode: hash
> outputColumnNames: _col0, _col1, _col2, _col3
> Statistics: Num rows: 121 Data size: 15004
> Basic stats: COMPLETE Column stats: COMPLETE
> Reduce Output Operator
> key expressions: _col0 (type: string)
> sort order: +
> Map-reduce partition columns: _col0 (type:
> string)
> Statistics: Num rows: 121 Data size: 15004
> Basic stats: COMPLETE Column stats: COMPLETE
> value expressions: _col1 (type: double),
> _col2 (type: double), _col3 (type: double)
> Execution mode: vectorized
> Map 6
> Map Operator Tree:
> TableScan
> alias: item
> filterExpr: ((i_current_price > 50.0) and i_item_sk is not
> null) (type: boolean)
> Statistics: Num rows: 48000 Data size: 68732712 Basic
> stats: COMPLETE Column stats: COMPLETE
> Filter Operator
> predicate: ((i_current_price > 50.0) and i_item_sk is not
> null) (type: boolean)
> Statistics: Num rows: 16000 Data size: 127832 Basic
> stats: COMPLETE Column stats: COMPLETE
> Select Operator
> expressions: i_item_sk (type: int)
> outputColumnNames: _col0
> Statistics: Num rows: 16000 Data size: 64000 Basic
> stats: COMPLETE Column stats: COMPLETE
> Reduce Output Operator
> key expressions: _col0 (type: int)
> sort order: +
> Map-reduce partition columns: _col0 (type: int)
> Statistics: Num rows: 16000 Data size: 64000 Basic
> stats: COMPLETE Column stats: COMPLETE
> Execution mode: vectorized
> Map 7
> Map Operator Tree:
> TableScan
> alias: promotion
> filterExpr: ((p_channel_tv = 'N') and p_promo_sk is not
> null) (type: boolean)
> Statistics: Num rows: 450 Data size: 530848 Basic stats:
> COMPLETE Column stats: COMPLETE
> Filter Operator
> predicate: ((p_channel_tv = 'N') and p_promo_sk is not
> null) (type: boolean)
> Statistics: Num rows: 225 Data size: 20025 Basic stats:
> COMPLETE Column stats: COMPLETE
> Select Operator
> expressions: p_promo_sk (type: int)
> outputColumnNames: _col0
> Statistics: Num rows: 225 Data size: 900 Basic stats:
> COMPLETE Column stats: COMPLETE
> Reduce Output Operator
> key expressions: _col0 (type: int)
> sort order: +
> Map-reduce partition columns: _col0 (type: int)
> Statistics: Num rows: 225 Data size: 900 Basic stats:
> COMPLETE Column stats: COMPLETE
> Execution mode: vectorized
> Reducer 5
> Reduce Operator Tree:
> Group By Operator
> aggregations: sum(VALUE._col0), sum(VALUE._col1),
> sum(VALUE._col2)
> keys: KEY._col0 (type: string)
> mode: mergepartial
> outputColumnNames: _col0, _col1, _col2, _col3
> Statistics: Num rows: 121 Data size: 15004 Basic stats:
> COMPLETE Column stats: COMPLETE
> File Output Operator
> compressed: false
> Statistics: Num rows: 121 Data size: 15004 Basic stats:
> COMPLETE Column stats: COMPLETE
> table:
> input format: org.apache.hadoop.mapred.TextInputFormat
> output format:
> org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
> serde:
> org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
> Stage: Stage-0
> Fetch Operator
> limit: -1
> Processor Tree:
> ListSink
> {code}
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)