[
https://issues.apache.org/jira/browse/HIVE-17684?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16554856#comment-16554856
]
Sahil Takiar commented on HIVE-17684:
-------------------------------------
I'll look into the serialization issues, it seems to be a classpath issue and
it actually only affects {{TestSparkCliDriver}}. I checked the other test
failures, and am seeing a different stack-trace. It looks like the GC monitor
is causing a bunch of q-tests to fail. Perhaps because it is tuned too
aggressively for our tests? For example, {{TestCliDriver}} {{union21.q}} is
failing due to:
{code:java}
2018-07-23T23:12:36,334 ERROR [f9eb6e6a-a735-48ff-97c9-466febf5387a main]
exec.Task: Hive Runtime Error: Map local work exhausted
memoryorg.apache.hadoop.hive.ql.exec.mapjoin.MapJoinMemoryExhaustionError: GC
time percentage = 60, exceeded threshold.
at
org.apache.hadoop.hive.ql.exec.Operator.checkGcOverhead(Operator.java:1654)
at
org.apache.hadoop.hive.ql.exec.HashTableSinkOperator.process(HashTableSinkOperator.java:230)
at
org.apache.hadoop.hive.ql.exec.Operator.baseForward(Operator.java:1021)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:967)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:954)
at
org.apache.hadoop.hive.ql.exec.SelectOperator.process(SelectOperator.java:95)
at
org.apache.hadoop.hive.ql.exec.Operator.baseForward(Operator.java:1021)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:967)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:954)
at
org.apache.hadoop.hive.ql.exec.FilterOperator.process(FilterOperator.java:126)
at
org.apache.hadoop.hive.ql.exec.Operator.baseForward(Operator.java:1021)
at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:967)
at
org.apache.hadoop.hive.ql.exec.TableScanOperator.process(TableScanOperator.java:125)
at
org.apache.hadoop.hive.ql.exec.mr.MapredLocalTask.startForward(MapredLocalTask.java:460)
at
org.apache.hadoop.hive.ql.exec.mr.MapredLocalTask.startForward(MapredLocalTask.java:431)
at
org.apache.hadoop.hive.ql.exec.mr.MapredLocalTask.executeInProcess(MapredLocalTask.java:392)
at
org.apache.hadoop.hive.ql.exec.mr.MapredLocalTask.execute(MapredLocalTask.java:162)
{code}
> HoS memory issues with MapJoinMemoryExhaustionHandler
> -----------------------------------------------------
>
> Key: HIVE-17684
> URL: https://issues.apache.org/jira/browse/HIVE-17684
> Project: Hive
> Issue Type: Bug
> Components: Spark
> Reporter: Sahil Takiar
> Assignee: Misha Dmitriev
> Priority: Major
> Attachments: HIVE-17684.01.patch, HIVE-17684.02.patch,
> HIVE-17684.03.patch
>
>
> We have seen a number of memory issues due the {{HashSinkOperator}} use of
> the {{MapJoinMemoryExhaustionHandler}}. This handler is meant to detect
> scenarios where the small table is taking too much space in memory, in which
> case a {{MapJoinMemoryExhaustionError}} is thrown.
> The configs to control this logic are:
> {{hive.mapjoin.localtask.max.memory.usage}} (default 0.90)
> {{hive.mapjoin.followby.gby.localtask.max.memory.usage}} (default 0.55)
> The handler works by using the {{MemoryMXBean}} and uses the following logic
> to estimate how much memory the {{HashMap}} is consuming:
> {{MemoryMXBean#getHeapMemoryUsage().getUsed() /
> MemoryMXBean#getHeapMemoryUsage().getMax()}}
> The issue is that {{MemoryMXBean#getHeapMemoryUsage().getUsed()}} can be
> inaccurate. The value returned by this method returns all reachable and
> unreachable memory on the heap, so there may be a bunch of garbage data, and
> the JVM just hasn't taken the time to reclaim it all. This can lead to
> intermittent failures of this check even though a simple GC would have
> reclaimed enough space for the process to continue working.
> We should re-think the usage of {{MapJoinMemoryExhaustionHandler}} for HoS.
> In Hive-on-MR this probably made sense to use because every Hive task was run
> in a dedicated container, so a Hive Task could assume it created most of the
> data on the heap. However, in Hive-on-Spark there can be multiple Hive Tasks
> running in a single executor, each doing different things.
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)