[
https://issues.apache.org/jira/browse/HIVE-26221?focusedWorklogId=832292&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-832292
]
ASF GitHub Bot logged work on HIVE-26221:
-----------------------------------------
Author: ASF GitHub Bot
Created on: 09/Dec/22 09:12
Start Date: 09/Dec/22 09:12
Worklog Time Spent: 10m
Work Description: dengzhhu653 commented on code in PR #3137:
URL: https://github.com/apache/hive/pull/3137#discussion_r1044236615
##########
ql/src/java/org/apache/hadoop/hive/ql/optimizer/calcite/stats/FilterSelectivityEstimator.java:
##########
@@ -167,6 +178,109 @@ public Double visitCall(RexCall call) {
return selectivity;
}
+ private double computeRangePredicateSelectivity(RexCall call, SqlKind op) {
+ final boolean isLiteralLeft =
call.getOperands().get(0).getKind().equals(SqlKind.LITERAL);
+ final boolean isLiteralRight =
call.getOperands().get(1).getKind().equals(SqlKind.LITERAL);
+ final boolean isInputRefLeft =
call.getOperands().get(0).getKind().equals(SqlKind.INPUT_REF);
+ final boolean isInputRefRight =
call.getOperands().get(1).getKind().equals(SqlKind.INPUT_REF);
+
+ if (childRel instanceof HiveTableScan && isLiteralLeft != isLiteralRight
&& isInputRefLeft != isInputRefRight) {
+ final HiveTableScan t = (HiveTableScan) childRel;
+ final int inputRefIndex = ((RexInputRef)
call.getOperands().get(isInputRefLeft ? 0 : 1)).getIndex();
+ final List<ColStatistics> colStats =
t.getColStat(Collections.singletonList(inputRefIndex));
+
+ if (!colStats.isEmpty() && isHistogramAvailable(colStats.get(0))) {
+ final KllFloatsSketch kll =
KllFloatsSketch.heapify(Memory.wrap(colStats.get(0).getHistogram()));
+ final Object boundValueObject = ((RexLiteral)
call.getOperands().get(isLiteralLeft ? 0 : 1)).getValue();
+ final SqlTypeName typeName = call.getOperands().get(isInputRefLeft ? 0
: 1).getType().getSqlTypeName();
+ float value = extractLiteral(typeName, boundValueObject);
+ boolean closedBound = op.equals(SqlKind.LESS_THAN_OR_EQUAL) ||
op.equals(SqlKind.GREATER_THAN_OR_EQUAL);
+
+ double selectivity;
+ if (op.equals(SqlKind.LESS_THAN_OR_EQUAL) ||
op.equals(SqlKind.LESS_THAN)) {
+ selectivity = closedBound ? lessThanOrEqualSelectivity(kll, value) :
lessThanSelectivity(kll, value);
+ } else {
+ selectivity = closedBound ? greaterThanOrEqualSelectivity(kll,
value) : greaterThanSelectivity(kll, value);
+ }
+
+ // selectivity does not account for null values, we multiply for the
number of non-null values (getN) and we
+ // divide by the total (non-null + null values) to get the overall
selectivity
+ return kll.getN() * selectivity / t.getTable().getRowCount();
Review Comment:
Thank you, it makes sense!
Issue Time Tracking
-------------------
Worklog Id: (was: 832292)
Time Spent: 8h 40m (was: 8.5h)
> Add histogram-based column statistics
> -------------------------------------
>
> Key: HIVE-26221
> URL: https://issues.apache.org/jira/browse/HIVE-26221
> Project: Hive
> Issue Type: Improvement
> Components: CBO, Metastore, Statistics
> Affects Versions: 4.0.0-alpha-2
> Reporter: Alessandro Solimando
> Assignee: Alessandro Solimando
> Priority: Major
> Labels: pull-request-available
> Time Spent: 8h 40m
> Remaining Estimate: 0h
>
> Hive does not support histogram statistics, which are particularly useful for
> skewed data (which is very common in practice) and range predicates.
> Hive's current selectivity estimation for range predicates is based on a
> hard-coded value of 1/3 (see
> [FilterSelectivityEstimator.java#L138-L144|https://github.com/apache/hive/blob/56c336268ea8c281d23c22d89271af37cb7e2572/ql/src/java/org/apache/hadoop/hive/ql/optimizer/calcite/stats/FilterSelectivityEstimator.java#L138-L144]).])
> The current proposal aims at integrating histogram as an additional column
> statistics, stored into the Hive metastore at the table (or partition) level.
> The main requirements for histogram integration are the following:
> * efficiency: the approach must scale and support billions of rows
> * merge-ability: partition-level histograms have to be merged to form
> table-level histograms
> * explicit and configurable trade-off between memory footprint and accuracy
> Hive already integrates [KLL data
> sketches|https://datasketches.apache.org/docs/KLL/KLLSketch.html] UDAF.
> Datasketches are small, stateful programs that process massive data-streams
> and can provide approximate answers, with mathematical guarantees, to
> computationally difficult queries orders-of-magnitude faster than
> traditional, exact methods.
> We propose to use KLL, and more specifically the cumulative distribution
> function (CDF), as the underlying data structure for our histogram statistics.
> The current proposal targets numeric data types (float, integer and numeric
> families) and temporal data types (date and timestamp).
--
This message was sent by Atlassian Jira
(v8.20.10#820010)