[
https://issues.apache.org/jira/browse/HIVE-16004?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15879704#comment-15879704
]
Colin Ma commented on HIVE-16004:
---------------------------------
[~xuefuz], thanks for the review. I check the log of failure test cases, and it
isn't caused by this update.
> OutOfMemory in SparkReduceRecordHandler with vectorization mode
> ---------------------------------------------------------------
>
> Key: HIVE-16004
> URL: https://issues.apache.org/jira/browse/HIVE-16004
> Project: Hive
> Issue Type: Bug
> Reporter: Colin Ma
> Assignee: Colin Ma
> Attachments: HIVE-16004.001.patch, HIVE-16004.002.patch
>
>
> For the query 28 of TPCs-BB with 1T data, the executor memory is set as 30G.
> Get the following exception:
> java.lang.OutOfMemoryError
> at
> java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123)
> at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117)
> at
> java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
> at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
> at java.io.DataOutputStream.write(DataOutputStream.java:107)
> at
> org.apache.hadoop.hive.ql.exec.vector.VectorizedBatchUtil.setVector(VectorizedBatchUtil.java:467)
> at
> org.apache.hadoop.hive.ql.exec.vector.VectorizedBatchUtil.addRowToBatchFrom(VectorizedBatchUtil.java:238)
> at
> org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processVectors(SparkReduceRecordHandler.java:367)
> at
> org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processRow(SparkReduceRecordHandler.java:286)
> at
> org.apache.hadoop.hive.ql.exec.spark.SparkReduceRecordHandler.processRow(SparkReduceRecordHandler.java:220)
> at
> org.apache.hadoop.hive.ql.exec.spark.HiveReduceFunctionResultList.processNextRecord(HiveReduceFunctionResultList.java:49)
> at
> org.apache.hadoop.hive.ql.exec.spark.HiveReduceFunctionResultList.processNextRecord(HiveReduceFunctionResultList.java:28)
> at
> org.apache.hadoop.hive.ql.exec.spark.HiveBaseFunctionResultList.hasNext(HiveBaseFunctionResultList.java:85)
> at
> scala.collection.convert.Wrappers$JIteratorWrapper.hasNext(Wrappers.scala:42)
> at scala.collection.Iterator$class.foreach(Iterator.scala:893)
> at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
> at
> org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127)
> at
> org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127)
> at
> org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1974)
> at
> org.apache.spark.SparkContext$$anonfun$33.apply(SparkContext.scala:1974)
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
> at org.apache.spark.scheduler.Task.run(Task.scala:85)
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:745)
> I think DataOutputBuffer isn't cleared on time cause this problem.
--
This message was sent by Atlassian JIRA
(v6.3.15#6346)