[ 
https://issues.apache.org/jira/browse/HIVE-16980?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16065908#comment-16065908
 ] 

Xuefu Zhang commented on HIVE-16980:
------------------------------------

This is interesting. Have you checked your data for skew? In theory, hash 
partitioner does a pretty good job for evenly distributing the keys. Unless the 
keys are skewed, each partition is expected to process about the same number of 
rows.

It's possible to provide a custom partitioner here, but I'm not entirely sure 
if that's worthwhile.

> The partition of join is not divided evently in HOS
> ---------------------------------------------------
>
>                 Key: HIVE-16980
>                 URL: https://issues.apache.org/jira/browse/HIVE-16980
>             Project: Hive
>          Issue Type: Bug
>            Reporter: liyunzhang_intel
>
> In HoS,the join implementation is union+repartition sort. We use 
> HashPartitioner to partition the result of union. 
> SortByShuffler.java
> {code}
>     public JavaPairRDD<HiveKey, BytesWritable> shuffle(
>       JavaPairRDD<HiveKey, BytesWritable> input, int numPartitions) {
>     JavaPairRDD<HiveKey, BytesWritable> rdd;
>     if (totalOrder) {
>       if (numPartitions > 0) {
>         if (numPartitions > 1 && input.getStorageLevel() == 
> StorageLevel.NONE()) {
>           input.persist(StorageLevel.DISK_ONLY());
>           sparkPlan.addCachedRDDId(input.id());
>         }
>         rdd = input.sortByKey(true, numPartitions);
>       } else {
>         rdd = input.sortByKey(true);
>       }
>     } else {
>       Partitioner partitioner = new HashPartitioner(numPartitions);
>       rdd = input.repartitionAndSortWithinPartitions(partitioner);
>     }
>     return rdd;
>   }
> {code}
> In spark history server, i saw that there are 28 tasks in the repartition 
> sort period while 21 tasks are finished less than 1s and the remaining 7 
> tasks spend long time to execute. Is there any way to make the data evenly 
> assigned to every partition?



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to