[
https://issues.apache.org/jira/browse/HIVE-17087?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Sahil Takiar updated HIVE-17087:
--------------------------------
Description:
Ran the following query in the {{TestSparkCliDriver}}:
{code:sql}
set hive.spark.dynamic.partition.pruning=true;
set hive.auto.convert.join=true;
create table partitioned_table1 (col int) partitioned by (part_col int);
create table partitioned_table2 (col int) partitioned by (part_col int);
create table regular_table (col int);
insert into table regular_table values (1);
alter table partitioned_table1 add partition (part_col = 1);
insert into table partitioned_table1 partition (part_col = 1) values (1), (2),
(3), (4), (5), (6), (7), (8), (9), (10);
alter table partitioned_table2 add partition (part_col = 1);
insert into table partitioned_table2 partition (part_col = 1) values (1), (2),
(3), (4), (5), (6), (7), (8), (9), (10);
explain select * from partitioned_table1, partitioned_table2 where
partitioned_table1.part_col = partitioned_table2.part_col;
{code}
and got the following explain plan:
{code}
STAGE DEPENDENCIES:
Stage-2 is a root stage
Stage-3 depends on stages: Stage-2
Stage-1 depends on stages: Stage-3
Stage-0 depends on stages: Stage-1
STAGE PLANS:
Stage: Stage-2
Spark
#### A masked pattern was here ####
Vertices:
Map 3
Map Operator Tree:
TableScan
alias: partitioned_table1
Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE
Column stats: NONE
Select Operator
expressions: col (type: int), part_col (type: int)
outputColumnNames: _col0, _col1
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Select Operator
expressions: _col1 (type: int)
outputColumnNames: _col0
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Group By Operator
keys: _col0 (type: int)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Spark Partition Pruning Sink Operator
partition key expr: part_col
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
target column name: part_col
target work: Map 2
Stage: Stage-3
Spark
#### A masked pattern was here ####
Vertices:
Map 2
Map Operator Tree:
TableScan
alias: partitioned_table2
Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE
Column stats: NONE
Select Operator
expressions: col (type: int), part_col (type: int)
outputColumnNames: _col0, _col1
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Spark HashTable Sink Operator
keys:
0 _col1 (type: int)
1 _col1 (type: int)
Local Work:
Map Reduce Local Work
Stage: Stage-1
Spark
#### A masked pattern was here ####
Vertices:
Map 1
Map Operator Tree:
TableScan
alias: partitioned_table1
Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE
Column stats: NONE
Select Operator
expressions: col (type: int), part_col (type: int)
outputColumnNames: _col0, _col1
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col1 (type: int)
1 _col1 (type: int)
outputColumnNames: _col0, _col1, _col2, _col3
input vertices:
1 Map 2
Statistics: Num rows: 11 Data size: 12 Basic stats:
COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 11 Data size: 12 Basic stats:
COMPLETE Column stats: NONE
table:
input format:
org.apache.hadoop.mapred.SequenceFileInputFormat
output format:
org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde:
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
{code}
Stage-2 seems unnecessary, given that Stage-1 is going to do a full table scan
of {{partitioned_table1}} when running the map-join
was:
Ran the following query in the {{TestSparkCliDriver}}:
{code:sql}
set hive.spark.dynamic.partition.pruning=true;
set hive.auto.convert.join=true;
create table partitioned_table1 (col int) partitioned by (part_col int);
create table partitioned_table2 (col int) partitioned by (part_col int);
create table regular_table (col int);
insert into table regular_table values (1);
alter table partitioned_table1 add partition (part_col = 1);
insert into table partitioned_table1 partition (part_col = 1) values (1), (2),
(3), (4), (5), (6), (7), (8), (9), (10);
alter table partitioned_table2 add partition (part_col = 1);
insert into table partitioned_table2 partition (part_col = 1) values (1), (2),
(3), (4), (5), (6), (7), (8), (9), (10);
explain select * from partitioned_table1 where partitioned_table1.part_col in
(select regular_table.col from regular_table join partitioned_table2 on
regular_table.col = partitioned_table2.part_col);
{code}
and got the following explain plan:
{code}
STAGE DEPENDENCIES:
Stage-2 is a root stage
Stage-4 depends on stages: Stage-2
Stage-5 depends on stages: Stage-4
Stage-3 depends on stages: Stage-5
Stage-1 depends on stages: Stage-3
Stage-0 depends on stages: Stage-1
STAGE PLANS:
Stage: Stage-2
Spark
#### A masked pattern was here ####
Vertices:
Map 4
Map Operator Tree:
TableScan
alias: partitioned_table1
Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE
Column stats: NONE
Select Operator
expressions: col (type: int), part_col (type: int)
outputColumnNames: _col0, _col1
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Select Operator
expressions: _col1 (type: int)
outputColumnNames: _col0
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Group By Operator
keys: _col0 (type: int)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Spark Partition Pruning Sink Operator
partition key expr: part_col
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
target column name: part_col
target work: Map 3
Stage: Stage-4
Spark
#### A masked pattern was here ####
Vertices:
Map 2
Map Operator Tree:
TableScan
alias: regular_table
Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE
Column stats: NONE
Filter Operator
predicate: col is not null (type: boolean)
Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE
Column stats: NONE
Select Operator
expressions: col (type: int)
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
Spark HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Select Operator
expressions: _col0 (type: int)
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
Group By Operator
keys: _col0 (type: int)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
Spark Partition Pruning Sink Operator
partition key expr: part_col
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
target column name: part_col
target work: Map 3
Local Work:
Map Reduce Local Work
Stage: Stage-5
Spark
#### A masked pattern was here ####
Stage: Stage-3
Spark
#### A masked pattern was here ####
Vertices:
Map 3
Map Operator Tree:
TableScan
alias: partitioned_table2
Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE
Column stats: NONE
Select Operator
expressions: part_col (type: int)
outputColumnNames: _col0
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0
input vertices:
0 Map 2
Statistics: Num rows: 11 Data size: 12 Basic stats:
COMPLETE Column stats: NONE
Group By Operator
keys: _col0 (type: int)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 11 Data size: 12 Basic stats:
COMPLETE Column stats: NONE
Spark HashTable Sink Operator
keys:
0 _col1 (type: int)
1 _col0 (type: int)
Local Work:
Map Reduce Local Work
Stage: Stage-1
Spark
#### A masked pattern was here ####
Vertices:
Map 1
Map Operator Tree:
TableScan
alias: partitioned_table1
Statistics: Num rows: 10 Data size: 11 Basic stats: COMPLETE
Column stats: NONE
Select Operator
expressions: col (type: int), part_col (type: int)
outputColumnNames: _col0, _col1
Statistics: Num rows: 10 Data size: 11 Basic stats:
COMPLETE Column stats: NONE
Map Join Operator
condition map:
Left Semi Join 0 to 1
keys:
0 _col1 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col1
input vertices:
1 Map 3
Statistics: Num rows: 12 Data size: 13 Basic stats:
COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 12 Data size: 13 Basic stats:
COMPLETE Column stats: NONE
table:
input format:
org.apache.hadoop.mapred.SequenceFileInputFormat
output format:
org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde:
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
{code}
I see a couple of weird things in the above explain plan:
* I don't think there should be a partitioned_table1 scan -> Spark Partition
Pruning Sink
* I'm not sure what is happening with Stage-5 of the explain plan
For reference, here is the explain plan for the equivalent query in Hive-on-Tez:
{code}
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1
STAGE PLANS:
Stage: Stage-1
Tez
#### A masked pattern was here ####
Edges:
Map 1 <- Map 3 (BROADCAST_EDGE)
Map 3 <- Map 2 (BROADCAST_EDGE)
#### A masked pattern was here ####
Vertices:
Map 1
Map Operator Tree:
TableScan
alias: partitioned_table1
Statistics: Num rows: 10 Data size: 51 Basic stats: COMPLETE
Column stats: PARTIAL
Select Operator
expressions: col (type: int), part_col (type: int)
outputColumnNames: _col0, _col1
Statistics: Num rows: 10 Data size: 40 Basic stats:
COMPLETE Column stats: PARTIAL
Map Join Operator
condition map:
Left Semi Join 0 to 1
keys:
0 _col1 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col1
input vertices:
1 Map 3
Statistics: Num rows: 12 Data size: 48 Basic stats:
COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 12 Data size: 48 Basic stats:
COMPLETE Column stats: NONE
table:
input format:
org.apache.hadoop.mapred.SequenceFileInputFormat
output format:
org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde:
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Execution mode: llap
LLAP IO: no inputs
Map 2
Map Operator Tree:
TableScan
alias: regular_table
Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE
Column stats: NONE
Filter Operator
predicate: col is not null (type: boolean)
Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE
Column stats: NONE
Select Operator
expressions: col (type: int)
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: int)
sort order: +
Map-reduce partition columns: _col0 (type: int)
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int)
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
Group By Operator
keys: _col0 (type: int)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
Dynamic Partitioning Event Operator
Target column: part_col (int)
Target Input: partitioned_table2
Partition key expr: part_col
Statistics: Num rows: 1 Data size: 1 Basic stats:
COMPLETE Column stats: NONE
Target Vertex: Map 3
Execution mode: llap
LLAP IO: no inputs
Map 3
Map Operator Tree:
TableScan
alias: partitioned_table2
Statistics: Num rows: 10 Data size: 51 Basic stats: COMPLETE
Column stats: COMPLETE
Select Operator
expressions: part_col (type: int)
outputColumnNames: _col0
Statistics: Num rows: 10 Data size: 40 Basic stats:
COMPLETE Column stats: COMPLETE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0
input vertices:
0 Map 2
Statistics: Num rows: 11 Data size: 44 Basic stats:
COMPLETE Column stats: NONE
Group By Operator
keys: _col0 (type: int)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 11 Data size: 44 Basic stats:
COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: int)
sort order: +
Map-reduce partition columns: _col0 (type: int)
Statistics: Num rows: 11 Data size: 44 Basic stats:
COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int)
outputColumnNames: _col0
Statistics: Num rows: 11 Data size: 44 Basic stats:
COMPLETE Column stats: NONE
Group By Operator
keys: _col0 (type: int)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 11 Data size: 44 Basic stats:
COMPLETE Column stats: NONE
Dynamic Partitioning Event Operator
Target column: part_col (int)
Target Input: partitioned_table1
Partition key expr: part_col
Statistics: Num rows: 11 Data size: 44 Basic
stats: COMPLETE Column stats: NONE
Target Vertex: Map 1
Execution mode: llap
LLAP IO: no inputs
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
{code}
> Remove unnecessary HoS DPP trees during map-join conversion
> -----------------------------------------------------------
>
> Key: HIVE-17087
> URL: https://issues.apache.org/jira/browse/HIVE-17087
> Project: Hive
> Issue Type: Sub-task
> Components: Spark
> Reporter: Sahil Takiar
> Assignee: Sahil Takiar
> Attachments: HIVE-17087.1.patch
>
>
> Ran the following query in the {{TestSparkCliDriver}}:
> {code:sql}
> set hive.spark.dynamic.partition.pruning=true;
> set hive.auto.convert.join=true;
> create table partitioned_table1 (col int) partitioned by (part_col int);
> create table partitioned_table2 (col int) partitioned by (part_col int);
> create table regular_table (col int);
> insert into table regular_table values (1);
> alter table partitioned_table1 add partition (part_col = 1);
> insert into table partitioned_table1 partition (part_col = 1) values (1),
> (2), (3), (4), (5), (6), (7), (8), (9), (10);
> alter table partitioned_table2 add partition (part_col = 1);
> insert into table partitioned_table2 partition (part_col = 1) values (1),
> (2), (3), (4), (5), (6), (7), (8), (9), (10);
> explain select * from partitioned_table1, partitioned_table2 where
> partitioned_table1.part_col = partitioned_table2.part_col;
> {code}
> and got the following explain plan:
> {code}
> STAGE DEPENDENCIES:
> Stage-2 is a root stage
> Stage-3 depends on stages: Stage-2
> Stage-1 depends on stages: Stage-3
> Stage-0 depends on stages: Stage-1
> STAGE PLANS:
> Stage: Stage-2
> Spark
> #### A masked pattern was here ####
> Vertices:
> Map 3
> Map Operator Tree:
> TableScan
> alias: partitioned_table1
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> Select Operator
> expressions: col (type: int), part_col (type: int)
> outputColumnNames: _col0, _col1
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> Select Operator
> expressions: _col1 (type: int)
> outputColumnNames: _col0
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> Group By Operator
> keys: _col0 (type: int)
> mode: hash
> outputColumnNames: _col0
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> Spark Partition Pruning Sink Operator
> partition key expr: part_col
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> target column name: part_col
> target work: Map 2
> Stage: Stage-3
> Spark
> #### A masked pattern was here ####
> Vertices:
> Map 2
> Map Operator Tree:
> TableScan
> alias: partitioned_table2
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> Select Operator
> expressions: col (type: int), part_col (type: int)
> outputColumnNames: _col0, _col1
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> Spark HashTable Sink Operator
> keys:
> 0 _col1 (type: int)
> 1 _col1 (type: int)
> Local Work:
> Map Reduce Local Work
> Stage: Stage-1
> Spark
> #### A masked pattern was here ####
> Vertices:
> Map 1
> Map Operator Tree:
> TableScan
> alias: partitioned_table1
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> Select Operator
> expressions: col (type: int), part_col (type: int)
> outputColumnNames: _col0, _col1
> Statistics: Num rows: 10 Data size: 11 Basic stats:
> COMPLETE Column stats: NONE
> Map Join Operator
> condition map:
> Inner Join 0 to 1
> keys:
> 0 _col1 (type: int)
> 1 _col1 (type: int)
> outputColumnNames: _col0, _col1, _col2, _col3
> input vertices:
> 1 Map 2
> Statistics: Num rows: 11 Data size: 12 Basic stats:
> COMPLETE Column stats: NONE
> File Output Operator
> compressed: false
> Statistics: Num rows: 11 Data size: 12 Basic stats:
> COMPLETE Column stats: NONE
> table:
> input format:
> org.apache.hadoop.mapred.SequenceFileInputFormat
> output format:
> org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
> serde:
> org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
> Local Work:
> Map Reduce Local Work
> Stage: Stage-0
> Fetch Operator
> limit: -1
> Processor Tree:
> ListSink
> {code}
> Stage-2 seems unnecessary, given that Stage-1 is going to do a full table
> scan of {{partitioned_table1}} when running the map-join
--
This message was sent by Atlassian JIRA
(v6.4.14#64029)