[ 
https://issues.apache.org/jira/browse/HIVE-7292?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Xuefu Zhang resolved HIVE-7292.
-------------------------------
       Resolution: Done
    Fix Version/s: 1.1.0

As the feature is already released in Hive and remaining issues have dedicated 
JIRAs to track, I'm closing this JIRA as "done".

> Hive on Spark
> -------------
>
>                 Key: HIVE-7292
>                 URL: https://issues.apache.org/jira/browse/HIVE-7292
>             Project: Hive
>          Issue Type: Improvement
>          Components: Spark
>            Reporter: Xuefu Zhang
>            Assignee: Xuefu Zhang
>              Labels: Spark-M1, Spark-M2, Spark-M3, Spark-M4, Spark-M5
>             Fix For: 1.1.0
>
>         Attachments: Hive-on-Spark.pdf
>
>
> Spark as an open-source data analytics cluster computing framework has gained 
> significant momentum recently. Many Hive users already have Spark installed 
> as their computing backbone. To take advantages of Hive, they still need to 
> have either MapReduce or Tez on their cluster. This initiative will provide 
> user a new alternative so that those user can consolidate their backend. 
> Secondly, providing such an alternative further increases Hive's adoption as 
> it exposes Spark users  to a viable, feature-rich de facto standard SQL tools 
> on Hadoop.
> Finally, allowing Hive to run on Spark also has performance benefits. Hive 
> queries, especially those involving multiple reducer stages, will run faster, 
> thus improving user experience as Tez does.
> This is an umbrella JIRA which will cover many coming subtask. Design doc 
> will be attached here shortly, and will be on the wiki as well. Feedback from 
> the community is greatly appreciated!



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to