Github user takuti commented on a diff in the pull request:

    https://github.com/apache/incubator-hivemall/pull/107#discussion_r134138339
  
    --- Diff: docs/gitbook/eval/binary_classification_measures.md ---
    @@ -0,0 +1,232 @@
    +<!--
    +  Licensed to the Apache Software Foundation (ASF) under one
    +  or more contributor license agreements.  See the NOTICE file
    +  distributed with this work for additional information
    +  regarding copyright ownership.  The ASF licenses this file
    +  to you under the Apache License, Version 2.0 (the
    +  "License"); you may not use this file except in compliance
    +  with the License.  You may obtain a copy of the License at
    +
    +    http://www.apache.org/licenses/LICENSE-2.0
    +
    +  Unless required by applicable law or agreed to in writing,
    +  software distributed under the License is distributed on an
    +  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
    +  KIND, either express or implied.  See the License for the
    +  specific language governing permissions and limitations
    +  under the License.
    +-->
    +
    +<!-- toc -->
    +
    +# Binary problems
    +
    +Binary classification problem is the task to predict the label of each 
data given two categorized dataset.
    +
    +Hivemall provides some tutorials to deal with binary classification 
problems as follows:
    +
    +- [Online advertisement click prediction](../binaryclass/general.html)
    +- [News classification](../binaryclass/news20_dataset.html)
    +
    +This page focuses on the evaluation of the results from such binary 
classification problems.
    +If you want to know about Area Under the ROC Curve, please check 
[AUC](./auc.md) page.
    +
    +# Example
    +
    +For the metrics explanation, this page introduces toy example data and two 
metrics.
    +
    +## Data
    +
    +The following table shows the sample of binary classification's prediction.
    +In this case, `1` means positive label and `0` means negative label.
    +Left column includes supervised label data,
    +Right column includes are predicted label by a binary classifier.w
    +
    +| truth label| predicted label |
    +|:---:|:---:|
    +| 1 | 0 |
    +| 0 | 1 |
    +| 0 | 0 |
    +| 1 | 1 |
    +| 0 | 1 |
    +| 0 | 0 |
    +
    +## Preliminary metrics
    +
    +Some evaluation metrics are calculated based on 4 values:
    +
    +- True Positive: truth label is positive and predicted label is also 
positive
    +- True Negative: truth label is negative and predicted label is also 
negative
    +- False Positive: truth label is negative but predicted label is positive
    +- False Negative: truth label is positive but predicted label is negative
    +
    +In this example, we can obtain those values:
    +
    +- True Positive: 1
    --- End diff --
    
    Values (or table) are incorrect; the above table should be TP=1, TN=2, 
FN=1, FP=2
    
    Since TP, FP, FN and TN are complicated for beginners, it's better to show 
which row corresponds to each of them as:
    
    | truth label| predicted label | |
    |:---:|:---:|:---|
    | 1 | 0 |False Negative|
    | 0 | 1 |False Positive|
    | 0 | 0 |True Negative|
    | 1 | 1 |True Positive|
    | 0 | 1 |False Positive|
    | 0 | 0 |True Negative|
    
    In addition, I would recommend you to clearly describe "TP and TN represent 
**correct** classification, and FP and FN illustrate **incorrect** ones."
    
    Furthermore, adding a link to external page which explains TP, FP, TN, FN 
somewhere like Wikipedia would be better.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to