Github user myui commented on a diff in the pull request:

    https://github.com/apache/incubator-hivemall/pull/116#discussion_r140725317
  
    --- Diff: core/src/main/java/hivemall/embedding/AbstractWord2VecModel.java 
---
    @@ -0,0 +1,117 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *   http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing,
    + * software distributed under the License is distributed on an
    + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
    + * KIND, either express or implied.  See the License for the
    + * specific language governing permissions and limitations
    + * under the License.
    + */
    +package hivemall.embedding;
    +
    +import hivemall.math.random.PRNG;
    +import hivemall.math.random.RandomNumberGeneratorFactory;
    +import hivemall.utils.collections.maps.Int2FloatOpenHashTable;
    +
    +import javax.annotation.Nonnegative;
    +import javax.annotation.Nonnull;
    +
    +public abstract class AbstractWord2VecModel {
    +    // cached sigmoid function parameters
    +    protected final int MAX_SIGMOID = 6;
    +    protected final int SIGMOID_TABLE_SIZE = 1000;
    +    protected float[] sigmoidTable;
    +
    +    // learning rate parameters
    +    @Nonnegative
    +    protected float lr;
    +    @Nonnegative
    +    private float startingLR;
    +    @Nonnegative
    +    private long numTrainWords;
    +    @Nonnegative
    +    protected long wordCount;
    +    @Nonnegative
    +    private long lastWordCount;
    +    @Nonnegative
    +    private long wordCountActual;
    +
    +    @Nonnegative
    +    protected int dim;
    +    private PRNG _rnd;
    +
    +    protected Int2FloatOpenHashTable contextWeights;
    +    protected Int2FloatOpenHashTable inputWeights;
    +
    +    protected AbstractWord2VecModel(final int dim, final float startingLR, 
final long numTrainWords) {
    +        this.dim = dim;
    +        this.startingLR = this.lr = startingLR;
    +        this.numTrainWords = numTrainWords;
    +
    +        this.wordCount = 0L;
    +        this.lastWordCount = 0L;
    +        this.wordCountActual = 0L;
    +        this._rnd = RandomNumberGeneratorFactory.createPRNG(1001);
    +
    +        this.sigmoidTable = initSigmoidTable(MAX_SIGMOID, 
SIGMOID_TABLE_SIZE);
    +
    +        // TODO how to estimate size
    +        this.inputWeights = new Int2FloatOpenHashTable(10578 * dim);
    +        this.inputWeights.defaultReturnValue(-0.f);
    +        this.contextWeights = new Int2FloatOpenHashTable(10578 * dim);
    +        this.contextWeights.defaultReturnValue(0.f);
    +    }
    +
    +    private static float[] initSigmoidTable(final int maxSigmoid, final 
int sigmoidTableSize) {
    +        float[] sigmoidTable = new float[sigmoidTableSize];
    +        for (int i = 0; i < sigmoidTableSize; i++) {
    +            float x = ((float) i / sigmoidTableSize * 2 - 1) * (float) 
maxSigmoid;
    +            sigmoidTable[i] = 1.f / ((float) Math.exp(-x) + 1.f);
    +        }
    +        return sigmoidTable;
    +    }
    +
    +    protected void initWordWeights(final int wordId) {
    +        for (int i = 0; i < dim; i++) {
    +            inputWeights.put(wordId * dim + i, ((float) _rnd.nextDouble() 
- 0.5f) / dim);
    +        }
    +    }
    +
    +    protected static float sigmoid(final float v, final int MAX_SIGMOID,
    --- End diff --
    
    No need to use Constants for argument: `final int MAX_SIGMOID, final int 
SIGMOID_TABLE_SIZE`


---

Reply via email to