[ 
https://issues.apache.org/jira/browse/HIVEMALL-222?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Makoto Yui updated HIVEMALL-222:
--------------------------------
    Description: 
Gradient Clipping is useful for avoiding exploding gradients
 
[https://github.com/scikit-learn/scikit-learn/blob/0fc7ce6bb8bb6b5b98c66ad2c0a009753def945a/sklearn/linear_model/sgd_fast.pyx#L701]

Details of exploding gradients can be found in [this 
link|http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15%20Exploding%20and%20Vanishing%20Gradients.pdf].


So, implement it for General Classifier/Regressor

  was:
Gradient Clipping is useful for avoiding exploding gradients
[https://github.com/scikit-learn/scikit-learn/blob/0fc7ce6bb8bb6b5b98c66ad2c0a009753def945a/sklearn/linear_model/sgd_fast.pyx#L701]

So, implement it for General Classifier/Regressor


> Introduce Gradient Clipping to avoid exploding gradient to General 
> Classifier/Regressor
> ---------------------------------------------------------------------------------------
>
>                 Key: HIVEMALL-222
>                 URL: https://issues.apache.org/jira/browse/HIVEMALL-222
>             Project: Hivemall
>          Issue Type: Improvement
>    Affects Versions: 0.5.0
>            Reporter: Makoto Yui
>            Assignee: Makoto Yui
>            Priority: Minor
>             Fix For: 0.5.2
>
>
> Gradient Clipping is useful for avoiding exploding gradients
>  
> [https://github.com/scikit-learn/scikit-learn/blob/0fc7ce6bb8bb6b5b98c66ad2c0a009753def945a/sklearn/linear_model/sgd_fast.pyx#L701]
> Details of exploding gradients can be found in [this 
> link|http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15%20Exploding%20and%20Vanishing%20Gradients.pdf].
> So, implement it for General Classifier/Regressor



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to