stevenzwu commented on code in PR #13720:
URL: https://github.com/apache/iceberg/pull/13720#discussion_r2292193779


##########
spark/v4.0/spark/src/main/java/org/apache/iceberg/spark/actions/RewriteTablePathSparkAction.java:
##########
@@ -494,36 +483,60 @@ public RewriteContentFileResult 
appendDeleteFile(RewriteResult<DeleteFile> r1) {
     }
   }
 
-  /** Rewrite manifest files in a distributed manner and return rewritten data 
files path pairs. */
-  private RewriteContentFileResult rewriteManifests(
+  /**
+   * Rewrite manifest files in a distributed manner and return the resulting 
manifests and content
+   * files selected for rewriting.
+   */
+  private Map<String, RewriteContentFileResult> rewriteManifests(
       Set<Snapshot> deltaSnapshots, TableMetadata tableMetadata, 
Set<ManifestFile> toRewrite) {
     if (toRewrite.isEmpty()) {
-      return new RewriteContentFileResult();
+      return Maps.newHashMap();
     }
 
     Encoder<ManifestFile> manifestFileEncoder = 
Encoders.javaSerialization(ManifestFile.class);
+    Encoder<RewriteContentFileResult> manifestResultEncoder =
+        Encoders.javaSerialization(RewriteContentFileResult.class);
+    Encoder<Tuple2<String, RewriteContentFileResult>> tupleEncoder =
+        Encoders.tuple(Encoders.STRING(), manifestResultEncoder);
+
     Dataset<ManifestFile> manifestDS =
         spark().createDataset(Lists.newArrayList(toRewrite), 
manifestFileEncoder);
     Set<Long> deltaSnapshotIds =
         
deltaSnapshots.stream().map(Snapshot::snapshotId).collect(Collectors.toSet());
 
-    return manifestDS
-        .repartition(toRewrite.size())
-        .map(
-            toManifests(
-                tableBroadcast(),
-                sparkContext().broadcast(deltaSnapshotIds),
-                stagingDir,
-                tableMetadata.formatVersion(),
-                sourcePrefix,
-                targetPrefix),
-            Encoders.bean(RewriteContentFileResult.class))
-        // duplicates are expected here as the same data file can have 
different statuses
-        // (e.g. added and deleted)
-        .reduce((ReduceFunction<RewriteContentFileResult>) 
RewriteContentFileResult::append);
-  }
-
-  private static MapFunction<ManifestFile, RewriteContentFileResult> 
toManifests(
+    Iterator<Tuple2<String, RewriteContentFileResult>> resultIterator =
+        manifestDS
+            .repartition(toRewrite.size())
+            .map(
+                toManifests(
+                    tableBroadcast(),
+                    sparkContext().broadcast(deltaSnapshotIds),
+                    stagingDir,
+                    tableMetadata.formatVersion(),
+                    sourcePrefix,
+                    targetPrefix),
+                tupleEncoder)
+            .toLocalIterator();

Review Comment:
   In the previous code of using `reduce`, I thought the executors perform the 
initial reduction within their partitions, then the driver aggregates the 
partial results from executors.
   
   With `toLocalIterator`, everything is shipped back to the driver for one 
pass of aggregation. Hence I was asking about the memory footprint and 
scalability for large tables with a lot of manifest files (large or small).



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to