zhjwpku commented on code in PR #182: URL: https://github.com/apache/iceberg-cpp/pull/182#discussion_r2319232995
########## src/iceberg/util/decimal.cc: ########## @@ -0,0 +1,1044 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/// \file iceberg/util/decimal.cc +/// \brief 128-bit fixed-point decimal numbers. +/// Adapted from Apache Arrow with only Decimal128 support. +/// https://github.com/apache/arrow/blob/main/cpp/src/arrow/util/decimal.cc + +#include "iceberg/util/decimal.h" + +#include <array> +#include <bit> +#include <cassert> +#include <charconv> +#include <climits> +#include <cmath> +#include <cstdint> +#include <cstring> +#include <format> +#include <iomanip> +#include <limits> +#include <sstream> +#include <string> +#include <string_view> +#include <utility> + +#include "iceberg/result.h" +#include "iceberg/util/int128.h" +#include "iceberg/util/macros.h" + +namespace iceberg { + +namespace { + +// Signed left shift with well-defined behaviour on negative numbers or overflow +template <typename SignedInt, typename Shift> + requires std::is_signed_v<SignedInt> && std::is_integral_v<Shift> +constexpr SignedInt SafeLeftShift(SignedInt u, Shift shift) { + using UnsignedInt = std::make_unsigned_t<SignedInt>; + return static_cast<SignedInt>(static_cast<UnsignedInt>(u) << shift); +} + +struct DecimalComponents { + std::string_view while_digits; + std::string_view fractional_digits; + int32_t exponent; + char sign{0}; + bool has_exponent{false}; +}; + +inline bool IsSign(char c) { return c == '+' || c == '-'; } + +inline bool IsDigit(char c) { return c >= '0' && c <= '9'; } + +inline bool IsDot(char c) { return c == '.'; } + +inline bool StartsExponent(char c) { return c == 'e' || c == 'E'; } + +inline size_t ParseDigitsRun(std::string_view str, size_t pos, std::string_view* out) { + size_t start = pos; + while (pos < str.size() && IsDigit(str[pos])) { + ++pos; + } + *out = str.substr(start, pos - start); + return pos; +} + +bool ParseDecimalComponents(std::string_view str, DecimalComponents* out) { + size_t pos = 0; + + if (str.empty()) { + return false; + } + + // Sign of the number + if (IsSign(str[pos])) { + out->sign = str[pos++]; + } + // First run of digits + pos = ParseDigitsRun(str, pos, &out->while_digits); + if (pos == str.size()) { + return !out->while_digits.empty(); + } + + // Optional dot + if (IsDot(str[pos])) { + ++pos; + // Second run of digits after the dot + pos = ParseDigitsRun(str, pos, &out->fractional_digits); + } + if (out->fractional_digits.empty() && out->while_digits.empty()) { + // Need at least some digits (whole or fractional) + return false; + } + if (pos == str.size()) { + return true; + } + + // Optional exponent part + if (StartsExponent(str[pos])) { + ++pos; + // Skip '+' sign, '-' sign will be handled by from_chars + if (pos < str.size() && str[pos] == '+') { + ++pos; + } + out->has_exponent = true; + auto [ptr, ec] = + std::from_chars(str.data() + pos, str.data() + str.size(), out->exponent); + if (ec != std::errc()) { + return false; // Failed to parse exponent + } + pos = ptr - str.data(); + } + + return pos == str.size(); +} + +constexpr auto kInt64DecimalDigits = + static_cast<size_t>(std::numeric_limits<int64_t>::digits10); + +constexpr std::array<uint64_t, kInt64DecimalDigits + 1> kUInt64PowersOfTen = { + // clang-format off + 1ULL, + 10ULL, + 100ULL, + 1000ULL, + 10000ULL, + 100000ULL, + 1000000ULL, + 10000000ULL, + 100000000ULL, + 1000000000ULL, + 10000000000ULL, + 100000000000ULL, + 1000000000000ULL, + 10000000000000ULL, + 100000000000000ULL, + 1000000000000000ULL, + 10000000000000000ULL, + 100000000000000000ULL, + 1000000000000000000ULL + // clang-format on +}; + +/// \brief Powers of ten for Decimal with scale from 0 to 38. +constexpr std::array<Decimal, Decimal::kMaxScale + 1> kDecimal128PowersOfTen = { + Decimal(1LL), + Decimal(10LL), + Decimal(100LL), + Decimal(1000LL), + Decimal(10000LL), + Decimal(100000LL), + Decimal(1000000LL), + Decimal(10000000LL), + Decimal(100000000LL), + Decimal(1000000000LL), + Decimal(10000000000LL), + Decimal(100000000000LL), + Decimal(1000000000000LL), + Decimal(10000000000000LL), + Decimal(100000000000000LL), + Decimal(1000000000000000LL), + Decimal(10000000000000000LL), + Decimal(100000000000000000LL), + Decimal(1000000000000000000LL), + Decimal(0LL, 10000000000000000000ULL), + Decimal(5LL, 7766279631452241920ULL), + Decimal(54LL, 3875820019684212736ULL), + Decimal(542LL, 1864712049423024128ULL), + Decimal(5421LL, 200376420520689664ULL), + Decimal(54210LL, 2003764205206896640ULL), + Decimal(542101LL, 1590897978359414784ULL), + Decimal(5421010LL, 15908979783594147840ULL), + Decimal(54210108LL, 11515845246265065472ULL), + Decimal(542101086LL, 4477988020393345024ULL), + Decimal(5421010862LL, 7886392056514347008ULL), + Decimal(54210108624LL, 5076944270305263616ULL), + Decimal(542101086242LL, 13875954555633532928ULL), + Decimal(5421010862427LL, 9632337040368467968ULL), + Decimal(54210108624275LL, 4089650035136921600ULL), + Decimal(542101086242752LL, 4003012203950112768ULL), + Decimal(5421010862427522LL, 3136633892082024448ULL), + Decimal(54210108624275221LL, 12919594847110692864ULL), + Decimal(542101086242752217LL, 68739955140067328ULL), + Decimal(5421010862427522170LL, 687399551400673280ULL)}; + +static inline void ShiftAndAdd(std::string_view input, uint128_t& out) { + for (size_t pos = 0; pos < input.size();) { + const size_t group_size = std::min(kInt64DecimalDigits, input.size() - pos); + const uint64_t multiple = kUInt64PowersOfTen[group_size]; + uint64_t value = 0; + + std::from_chars(input.data() + pos, input.data() + pos + group_size, value); + + out = out * multiple + value; + pos += group_size; + } +} + +static void AdjustIntegerStringWithScale(std::string* str, int32_t scale) { + if (scale == 0) { + return; + } + assert(str != nullptr); + assert(!str->empty()); + const bool is_negative = str->front() == '-'; + const auto is_negative_offset = static_cast<int32_t>(is_negative); + const auto len = static_cast<int32_t>(str->size()); + const int32_t num_digits = len - is_negative_offset; + const int32_t adjusted_exponent = num_digits - 1 - scale; + + // Note that the -6 is taken from the Java BigDecimal documentation. + if (scale < 0 || adjusted_exponent < -6) { + // Example 1: + // Precondition: *str = "123", is_negative_offset = 0, num_digits = 3, scale = -2, + // adjusted_exponent = 4 + // After inserting decimal point: *str = "1.23" + // After appending exponent: *str = "1.23E+4" + // Example 2: + // Precondition: *str = "-123", is_negative_offset = 1, num_digits = 3, scale = 9, + // adjusted_exponent = -7 + // After inserting decimal point: *str = "-1.23" + // After appending exponent: *str = "-1.23E-7" + // Example 3: + // Precondition: *str = "0", is_negative_offset = 0, num_digits = 1, scale = -1, + // adjusted_exponent = 1 + // After inserting decimal point: *str = "0" // Not inserted + // After appending exponent: *str = "0E+1" + if (num_digits > 1) { + str->insert(str->begin() + 1 + is_negative_offset, '.'); + } + str->push_back('E'); + if (adjusted_exponent >= 0) { + str->push_back('+'); + } + // Append the adjusted exponent as a string. + str->append(std::to_string(adjusted_exponent)); + return; + } + + if (num_digits > scale) { + const auto n = static_cast<size_t>(len - scale); + // Example 1: + // Precondition: *str = "123", len = num_digits = 3, scale = 1, n = 2 + // After inserting decimal point: *str = "12.3" + // Example 2: + // Precondition: *str = "-123", len = 4, num_digits = 3, scale = 1, n = 3 + // After inserting decimal point: *str = "-12.3" + str->insert(str->begin() + n, '.'); + return; + } + + // Example 1: + // Precondition: *str = "123", is_negative_offset = 0, num_digits = 3, scale = 4 + // After insert: *str = "000123" + // After setting decimal point: *str = "0.0123" + // Example 2: + // Precondition: *str = "-123", is_negative_offset = 1, num_digits = 3, scale = 4 + // After insert: *str = "-000123" + // After setting decimal point: *str = "-0.0123" + str->insert(is_negative_offset, scale - num_digits + 2, '0'); + str->at(is_negative_offset + 1) = '.'; +} + +} // namespace + +Decimal::Decimal(std::string_view str) { + auto result = Decimal::FromString(str); + if (!result) { + throw std::runtime_error( + std::format("Failed to parse Decimal from string: {}, error: {}", str, + result.error().message)); + } + *this = std::move(result.value()); +} + +Decimal& Decimal::Negate() { + uint128_t u = static_cast<uint128_t>(~data_) + 1; + data_ = static_cast<int128_t>(u); + return *this; +} + +Decimal& Decimal::Abs() { return *this < 0 ? Negate() : *this; } + +Decimal Decimal::Abs(const Decimal& value) { + Decimal result(value); + return result.Abs(); +} + +Decimal& Decimal::operator+=(const Decimal& other) { + data_ += other.data_; + return *this; +} + +Decimal& Decimal::operator-=(const Decimal& other) { + data_ -= other.data_; + return *this; +} + +Decimal& Decimal::operator*=(const Decimal& other) { + data_ *= other.data_; + return *this; +} + +Result<std::pair<Decimal, Decimal>> Decimal::Divide(const Decimal& divisor) const { + std::pair<Decimal, Decimal> result; + if (divisor == 0) { + return Invalid("Cannot divide by zero in Decimal::Divide"); + } + return std::make_pair(*this / divisor, *this % divisor); +} + +Decimal& Decimal::operator/=(const Decimal& other) { + data_ /= other.data_; + return *this; +} + +Decimal& Decimal::operator|=(const Decimal& other) { + data_ |= other.data_; + return *this; +} + +Decimal& Decimal::operator&=(const Decimal& other) { + data_ &= other.data_; + return *this; +} + +Decimal& Decimal::operator<<=(uint32_t shift) { + if (shift != 0) { + if (shift < 128) { + data_ = static_cast<int128_t>(static_cast<uint128_t>(data_) << shift); + } else { + data_ = 0; + } + } + + return *this; +} + +Decimal& Decimal::operator>>=(uint32_t shift) { + if (shift != 0) { + if (shift < 128) { + data_ >>= shift; + } else { + data_ = (data_ < 0) ? -1 : 0; + } + } + + return *this; +} + +Result<std::string> Decimal::ToString(int32_t scale) const { + if (scale < -kMaxScale || scale > kMaxScale) { + return InvalidArgument( + "Decimal::ToString: scale must be in the range [-{}, {}], was {}", kMaxScale, + kMaxScale, scale); + } + std::string str(ToIntegerString()); + AdjustIntegerStringWithScale(&str, scale); + return str; +} + +std::string Decimal::ToIntegerString() const { + if (data_ == 0) { + return "0"; + } + + bool negative = data_ < 0; + uint128_t uval = + negative ? -static_cast<uint128_t>(data_) : static_cast<uint128_t>(data_); + + constexpr uint32_t k1e9 = 1000000000U; + constexpr size_t kNumBits = 128; + // Segments will contain the array split into groups that map to decimal digits, in + // little endian order. Each segment will hold at most 9 decimal digits. For example, if + // the input represents 9876543210123456789, then segments will be [123456789, + // 876543210, 9]. + // The max number of segments needed = ceil(kNumBits * log(2) / log(1e9)) + // = ceil(kNumBits / 29.897352854) <= ceil(kNumBits / 29). + std::array<uint32_t, (kNumBits + 28) / 29> segments; + size_t num_segments = 0; + + while (uval > 0) { + // Compute remainder = uval % 1e9 and uval = uval / 1e9. + auto remainder = static_cast<uint32_t>(uval % k1e9); + uval /= k1e9; + segments[num_segments++] = remainder; + } + + std::ostringstream oss; + if (negative) { + oss << '-'; + } + + // First segment is formatted as-is. + oss << segments[num_segments - 1]; + + // Remaining segments are formatted with leading zeros to fill 9 digits. e.g. 123 is + // formatted as "000000123" + for (size_t i = num_segments - 1; i-- > 0;) { + oss << std::setw(9) << std::setfill('0') << segments[i]; + } + + return oss.str(); +} + +Result<Decimal> Decimal::FromString(std::string_view str, int32_t* precision, + int32_t* scale) { + if (str.empty()) { + return InvalidArgument("Empty string is not a valid Decimal"); + } + DecimalComponents dec; + if (!ParseDecimalComponents(str, &dec)) { + return InvalidArgument("Invalid decimal string '{}'", str); + } + + // Count number of significant digits (without leading zeros) + size_t first_non_zero = dec.while_digits.find_first_not_of('0'); + size_t significant_digits = dec.fractional_digits.size(); + if (first_non_zero != std::string_view::npos) { + significant_digits += dec.while_digits.size() - first_non_zero; + } + + auto parsed_precision = static_cast<int32_t>(significant_digits); + + int32_t parsed_scale = 0; + if (dec.has_exponent) { + auto adjusted_exponent = dec.exponent; + parsed_scale = static_cast<int32_t>(dec.fractional_digits.size()) - adjusted_exponent; + } else { + parsed_scale = static_cast<int32_t>(dec.fractional_digits.size()); + } + + uint128_t value = 0; + ShiftAndAdd(dec.while_digits, value); + ShiftAndAdd(dec.fractional_digits, value); + Decimal result(static_cast<int128_t>(value)); + + if (dec.sign == '-') { + result.Negate(); + } + + if (parsed_scale < 0) { + // For the scale to 0, to avoid negative scales (due to compatibility issues with + // external systems such as databases) + if (parsed_scale < -kMaxScale) { + return InvalidArgument("scale must be in the range [-{}, {}], was {}", kMaxScale, + kMaxScale, parsed_scale); + } + + result *= kDecimal128PowersOfTen[-parsed_scale]; + parsed_precision -= parsed_scale; + parsed_scale = 0; + } + + if (precision != nullptr) { + *precision = parsed_precision; + } + if (scale != nullptr) { + *scale = parsed_scale; + } + + return result; +} + +namespace { + +constexpr float kFloatInf = std::numeric_limits<float>::infinity(); + +// Attention: these pre-computed constants might not exactly represent their +// decimal counterparts: +// >>> int32_t(1e38) +// 99999999999999997748809823456034029568 + +constexpr int32_t kPrecomputedPowersOfTen = 76; + +constexpr std::array<float, 2 * kPrecomputedPowersOfTen + 1> kFloatPowersOfTen = { + 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 1e-45f, 1e-44f, 1e-43f, 1e-42f, + 1e-41f, 1e-40f, 1e-39f, 1e-38f, 1e-37f, 1e-36f, 1e-35f, + 1e-34f, 1e-33f, 1e-32f, 1e-31f, 1e-30f, 1e-29f, 1e-28f, + 1e-27f, 1e-26f, 1e-25f, 1e-24f, 1e-23f, 1e-22f, 1e-21f, + 1e-20f, 1e-19f, 1e-18f, 1e-17f, 1e-16f, 1e-15f, 1e-14f, + 1e-13f, 1e-12f, 1e-11f, 1e-10f, 1e-9f, 1e-8f, 1e-7f, + 1e-6f, 1e-5f, 1e-4f, 1e-3f, 1e-2f, 1e-1f, 1e0f, + 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, 1e6f, 1e7f, + 1e8f, 1e9f, 1e10f, 1e11f, 1e12f, 1e13f, 1e14f, + 1e15f, 1e16f, 1e17f, 1e18f, 1e19f, 1e20f, 1e21f, + 1e22f, 1e23f, 1e24f, 1e25f, 1e26f, 1e27f, 1e28f, + 1e29f, 1e30f, 1e31f, 1e32f, 1e33f, 1e34f, 1e35f, + 1e36f, 1e37f, 1e38f, kFloatInf, kFloatInf, kFloatInf, kFloatInf, + kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, + kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, + kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, + kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, + kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf, kFloatInf}; + +constexpr std::array<double, 2 * kPrecomputedPowersOfTen + 1> kDoublePowersOfTen = { + 1e-76, 1e-75, 1e-74, 1e-73, 1e-72, 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, + 1e-64, 1e-63, 1e-62, 1e-61, 1e-60, 1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, + 1e-52, 1e-51, 1e-50, 1e-49, 1e-48, 1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, + 1e-40, 1e-39, 1e-38, 1e-37, 1e-36, 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, + 1e-28, 1e-27, 1e-26, 1e-25, 1e-24, 1e-23, 1e-22, 1e-21, 1e-20, 1e-19, 1e-18, 1e-17, + 1e-16, 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, + 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, + 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, + 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, + 1e44, 1e45, 1e46, 1e47, 1e48, 1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, + 1e56, 1e57, 1e58, 1e59, 1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, + 1e68, 1e69, 1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76}; + +// ceil(log2(10 ^ k)) for k in [0...76] +constexpr std::array<int32_t, 76 + 1> kCeilLog2PowersOfTen = { + 0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 34, 37, 40, 44, 47, 50, + 54, 57, 60, 64, 67, 70, 74, 77, 80, 84, 87, 90, 94, 97, 100, 103, + 107, 110, 113, 117, 120, 123, 127, 130, 133, 137, 140, 143, 147, 150, 153, 157, + 160, 163, 167, 170, 173, 177, 180, 183, 187, 190, 193, 196, 200, 203, 206, 210, + 213, 216, 220, 223, 226, 230, 233, 236, 240, 243, 246, 250, 253}; + +template <typename Real> +struct RealTraits {}; + +template <> +struct RealTraits<float> { + static constexpr const float* powers_of_ten() { return kFloatPowersOfTen.data(); } + + static constexpr float two_to_64(float x) { return x * 1.8446744e+19f; } + + static constexpr int32_t kMantissaBits = 24; + // ceil(log10(2 ^ kMantissaBits)) + static constexpr int32_t kMantissaDigits = 8; + // Integers between zero and kMaxPreciseInteger can be precisely represented + static constexpr uint64_t kMaxPreciseInteger = (1ULL << kMantissaBits) - 1; +}; + +template <> +struct RealTraits<double> { + static constexpr const double* powers_of_ten() { return kDoublePowersOfTen.data(); } + + static constexpr double two_to_64(double x) { return x * 1.8446744073709552e+19; } + + static constexpr int32_t kMantissaBits = 53; + // ceil(log10(2 ^ kMantissaBits)) + static constexpr int32_t kMantissaDigits = 16; + // Integers between zero and kMaxPreciseInteger can be precisely represented + static constexpr uint64_t kMaxPreciseInteger = (1ULL << kMantissaBits) - 1; +}; + +struct DecimalRealConversion { + // Return 10**exp, with a fast lookup, assuming `exp` is within bounds + template <typename Real> + static Real PowerOfTen(int32_t exp) { + constexpr int32_t N = kPrecomputedPowersOfTen; + assert(exp >= -N && exp <= N); + return RealTraits<Real>::powers_of_ten()[N + exp]; + } + + // Return 10**exp, with a fast lookup if possible + template <typename Real> + static Real LargePowerOfTen(int32_t exp) { + constexpr int32_t N = kPrecomputedPowersOfTen; + if (exp >= -N && exp <= N) { + return RealTraits<Real>::powers_of_ten()[N + exp]; + } else { + return std::pow(static_cast<Real>(10.0), static_cast<Real>(exp)); + } + } + + static constexpr int32_t kMaxPrecision = Decimal::kMaxPrecision; + static constexpr int32_t kMaxScale = Decimal::kMaxScale; + + static constexpr auto& DecimalPowerOfTen(int32_t exp) { + assert(exp >= 0 && exp <= kMaxPrecision); + return kDecimal128PowersOfTen[exp]; + } + + // Right shift positive `x` by positive `bits`, rounded half to even + static Decimal RoundedRightShift(const Decimal& x, int32_t bits) { + if (bits == 0) { + return x; + } + int64_t result_hi = x.high(); + uint64_t result_lo = x.low(); + uint64_t shifted = 0; + while (bits >= 64) { + // Retain the information that set bits were shifted right. + // This is important to detect an exact half. + shifted = result_lo | (shifted > 0); + result_lo = result_hi; + result_hi >>= 63; // for sign + bits -= 64; + } + if (bits > 0) { + shifted = (result_lo << (64 - bits)) | (shifted > 0); + result_lo >>= bits; + result_lo |= static_cast<uint64_t>(result_hi) << (64 - bits); + result_hi >>= bits; + } + // We almost have our result, but now do the rounding. + constexpr uint64_t kHalf = 0x8000000000000000ULL; + if (shifted > kHalf) { + // Strictly more than half => round up + result_lo += 1; + result_hi += (result_lo == 0); + } else if (shifted == kHalf) { + // Exactly half => round to even + if ((result_lo & 1) != 0) { + result_lo += 1; + result_hi += (result_lo == 0); + } + } else { + // Strictly less than half => round down + } + return Decimal{result_hi, result_lo}; + } + + template <typename Real> + static Result<Decimal> FromPositiveApprox(Real real, int32_t precision, int32_t scale) { + // Approximate algorithm that operates in the FP domain (thus subject + // to precision loss). + const auto x = std::nearbyint(real * PowerOfTen<double>(scale)); + const auto max_abs = PowerOfTen<double>(precision); Review Comment: Good catch, I originally copy this from Decimal128 version of FromPositiveRealApprox, but after some dig, Real should be fine. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org