jorisvandenbossche commented on code in PR #6775:
URL: https://github.com/apache/iceberg/pull/6775#discussion_r1192188646
##########
python/pyiceberg/io/pyarrow.py:
##########
@@ -498,6 +504,49 @@ def expression_to_pyarrow(expr: BooleanExpression) ->
pc.Expression:
return boolean_expression_visit(expr, _ConvertToArrowExpression())
+@lru_cache
+def _get_file_format(file_format: FileFormat, **kwargs: Dict[str, Any]) ->
ds.FileFormat:
+ if file_format == FileFormat.PARQUET:
+ return ds.ParquetFileFormat(**kwargs)
+ else:
+ raise ValueError(f"Unsupported file format: {file_format}")
+
+
+def _construct_fragment(fs: FileSystem, data_file: DataFile,
file_format_kwargs: Dict[str, Any] = EMPTY_DICT) -> ds.Fragment:
+ _, path = PyArrowFileIO.parse_location(data_file.file_path)
+ return _get_file_format(data_file.file_format,
**file_format_kwargs).make_fragment(path, fs)
+
+
+def _read_deletes(fs: FileSystem, data_file: DataFile) -> Dict[str,
pa.ChunkedArray]:
+ delete_fragment = _construct_fragment(
+ fs, data_file, file_format_kwargs={"dictionary_columns":
("file_path",), "pre_buffer": True, "buffer_size": ONE_MEGABYTE}
+ )
+ table = ds.Scanner.from_fragment(fragment=delete_fragment).to_table()
+ table.unify_dictionaries()
+ return {
+ file.as_py(): table.filter(pc.field("file_path") == file).column("pos")
+ for file in table.column("file_path").chunks[0].dictionary
+ }
+
+
+def _create_positional_deletes_indices(positional_deletes:
List[pa.ChunkedArray], fn_rows: Callable[[], int]) -> pa.Array:
+ sorted_deleted = merge(*positional_deletes)
+
+ def generator() -> Generator[int, None, None]:
+ deleted_pos = next(sorted_deleted).as_py() # type: ignore
+ for pos in range(fn_rows()):
+ if deleted_pos == pos:
+ try:
+ deleted_pos = next(sorted_deleted).as_py() # type: ignore
+ except StopIteration:
+ deleted_pos = -1
+ else:
+ yield pos
+
+ # Filter on the positions
+ return pa.array(generator(), type=pa.int64())
Review Comment:
Would something like this work?
```
In [20]: positional_deletes = [pa.chunked_array([[1, 3], [5, 7]]),
pa.chunked_array([[8], [10, 14]])]
In [21]: merged = pa.chunked_array([arr for carr in positional_deletes for
arr in carr.chunks])
In [22]: np.setdiff1d(np.arange(20), merged)
Out[22]: array([ 0, 2, 4, 6, 9, 11, 12, 13, 15, 16, 17, 18, 19])
```
(assuming that `fn_rows()` returns 20)
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]