[
https://issues.apache.org/jira/browse/IGNITE-3018?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15257772#comment-15257772
]
Taras Ledkov commented on IGNITE-3018:
--------------------------------------
New implementation use the cache for MD5 hash & cache of serialization results
of a node's resolvers.
Approximates times of call the RendezvousAffinityFunction.assignPartitions. The
test replaces the last node 500 times:
Test 100 nodes. Old: 74 ms +/- 11.202 ms; New: 24 ms +/- 8.604 ms;
Test 200 nodes. Old: 152 ms +/- 15.816 ms; New: 64 ms +/- 13.450 ms;
Test 300 nodes. Old: 231 ms +/- 16.516 ms; New: 103 ms +/- 15.008 ms;
Test 400 nodes. Old: 310 ms +/- 18.549 ms; New: 181 ms +/- 28.094 ms;
Test 500 nodes. Old: 385 ms +/- 15.571 ms; New: 264 ms +/- 36.831 ms;
Test 600 nodes. Old: 464 ms +/- 16.210 ms; New: 383 ms +/- 73.448 ms;
> Cache affinity calculation is slow with large nodes number
> ----------------------------------------------------------
>
> Key: IGNITE-3018
> URL: https://issues.apache.org/jira/browse/IGNITE-3018
> Project: Ignite
> Issue Type: Bug
> Components: cache
> Reporter: Semen Boikov
> Assignee: Taras Ledkov
> Priority: Critical
> Fix For: 1.6
>
>
> With large number of cache server nodes (> 200) RendezvousAffinityFunction
> and FairAffinityFunction work pretty slow .
> For RendezvousAffinityFunction.assignPartitions can take hundredes of
> milliseconds, for FairAffinityFunction it can take seconds.
> For RendezvousAffinityFunction most time is spent in MD5 hash calculation and
> nodes list sorting. As optimization we can try to cache {partion, node} MD5
> hash or try another hash function. Also several minor optimizations are
> possible (avoid unncecessary allocations, only one thread local 'get', etc).
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)