[ 
https://issues.apache.org/jira/browse/IGNITE-3018?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15878234#comment-15878234
 ] 

Taras Ledkov commented on IGNITE-3018:
--------------------------------------

Chi^2 test:

|| Nodes ||  Fair   ||  Rendezvous (old)    ||   FastRendezvous   ||
|*5*      | 0.002531 | 0.003618    |  0.002531  |
|*64*    | 0.077637 | 0.063599    | 0.077637  |
|*100*   | 0.115036 | 0.113892    | 0.115036  |
|*128*   | 0.125732 | 0.121094    | 0.125732  |
|*200*   | 0.216888 | 0.203918    | 0.216888  |
|*256*   | 0.269531 | 0.248535    | 0.269531  |
|*300*   | 0.287460 | 0.280594    | 0.287460  |
|*400*   | 0.396179 | 0.361847    | 0.396179  |
|*500*   | 0.504898 | 0.501083    | 0.504898  |
|*600*   | 0.617050 | 0.589584    | 0.617050  |








        













> Cache affinity calculation is slow with large nodes number
> ----------------------------------------------------------
>
>                 Key: IGNITE-3018
>                 URL: https://issues.apache.org/jira/browse/IGNITE-3018
>             Project: Ignite
>          Issue Type: Bug
>          Components: cache
>            Reporter: Semen Boikov
>            Assignee: Yakov Zhdanov
>             Fix For: 2.0
>
>         Attachments: 003.png, 064.png, 100.png, 128.png, 200.png, 300.png, 
> 400.png, 500.png, 600.png
>
>
> With large number of cache server nodes (> 200)  RendezvousAffinityFunction 
> and FairAffinityFunction work pretty slow .
> For RendezvousAffinityFunction.assignPartitions can take hundredes of 
> milliseconds, for FairAffinityFunction it can take seconds.
> For RendezvousAffinityFunction most time is spent in MD5 hash calculation and 
> nodes list sorting. As optimization we can try to cache {partion, node} MD5 
> hash or try another hash function. Also several minor optimizations are 
> possible (avoid unncecessary allocations, only one thread local 'get', etc).



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Reply via email to