[ 
https://issues.apache.org/jira/browse/IGNITE-10314?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16723088#comment-16723088
 ] 

Ignite TC Bot commented on IGNITE-10314:
----------------------------------------

{panel:title=--> Run :: All: Possible 
Blockers|borderStyle=dashed|borderColor=#ccc|titleBGColor=#F7D6C1}
{color:#d04437}_Licenses Headers_{color} [[tests 0 Exit Code 
|https://ci.ignite.apache.org/viewLog.html?buildId=2574960]]

{panel}
[TeamCity *--> Run :: All* 
Results|https://ci.ignite.apache.org/viewLog.html?buildId=2536034&buildTypeId=IgniteTests24Java8_RunAll]

> Spark dataframe will get wrong schema if user executes add/drop column DDL
> --------------------------------------------------------------------------
>
>                 Key: IGNITE-10314
>                 URL: https://issues.apache.org/jira/browse/IGNITE-10314
>             Project: Ignite
>          Issue Type: Bug
>          Components: spark
>    Affects Versions: 2.3, 2.4, 2.5, 2.6, 2.7
>            Reporter: Ray
>            Assignee: Ray
>            Priority: Critical
>             Fix For: 2.8
>
>
> When user performs add/remove column in DDL,  Spark will get the old/wrong 
> schema.
>  
> Analyse 
> Currently Spark data frame API relies on QueryEntity to construct schema, but 
> QueryEntity in QuerySchema is a local copy of the original QueryEntity, so 
> the original QueryEntity is not updated when modification happens.
>  
> Solution
> Get the latest schema using JDBC thin driver's column metadata call, then 
> update fields in QueryEntity.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to