[
https://issues.apache.org/jira/browse/IGNITE-10314?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16723088#comment-16723088
]
Ignite TC Bot commented on IGNITE-10314:
----------------------------------------
{panel:title=--> Run :: All: Possible
Blockers|borderStyle=dashed|borderColor=#ccc|titleBGColor=#F7D6C1}
{color:#d04437}_Licenses Headers_{color} [[tests 0 Exit Code
|https://ci.ignite.apache.org/viewLog.html?buildId=2574960]]
{panel}
[TeamCity *--> Run :: All*
Results|https://ci.ignite.apache.org/viewLog.html?buildId=2536034&buildTypeId=IgniteTests24Java8_RunAll]
> Spark dataframe will get wrong schema if user executes add/drop column DDL
> --------------------------------------------------------------------------
>
> Key: IGNITE-10314
> URL: https://issues.apache.org/jira/browse/IGNITE-10314
> Project: Ignite
> Issue Type: Bug
> Components: spark
> Affects Versions: 2.3, 2.4, 2.5, 2.6, 2.7
> Reporter: Ray
> Assignee: Ray
> Priority: Critical
> Fix For: 2.8
>
>
> When user performs add/remove column in DDL, Spark will get the old/wrong
> schema.
>
> Analyse
> Currently Spark data frame API relies on QueryEntity to construct schema, but
> QueryEntity in QuerySchema is a local copy of the original QueryEntity, so
> the original QueryEntity is not updated when modification happens.
>
> Solution
> Get the latest schema using JDBC thin driver's column metadata call, then
> update fields in QueryEntity.
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)