zhaih commented on PR #15208:
URL: https://github.com/apache/lucene/pull/15208#issuecomment-3858491870

   I tried to play with the beamWidth and realized the recall is actually quite 
hard to improve:
   ```
   ### Candidate
   recall  latency(ms)  netCPU  avgCpuCount     nDoc  topK  fanout  maxConn  
beamWidth  quantized  visited  index(s)  index_docs/s  force_merge(s)  
num_segments  index_size(MB)  vec_disk(MB)  vec_RAM(MB)  indexType
    0.700        0.272   0.264        0.971  5000000   100      50       48     
   128         no     1405     99.00      50506.58          113.60             
1         2165.19      1907.349     1907.349       HNSW
    0.750        0.276   0.271        0.982  5000000   100      50       48     
   256         no     1643    182.84      27346.76          165.61             
1         2224.54      1907.349     1907.349       HNSW
    0.771        0.294   0.290        0.986  5000000   100      50       48     
   512         no     1744    338.41      14774.93          239.39             
1         2247.09      1907.349     1907.349       HNSW
    0.779        0.294   0.289        0.983  5000000   100      50       48     
   768         no     1794    487.29      10260.75          261.00             
1         2257.86      1907.349     1907.349       HNSW
   
   ### Baseline
   recall  latency(ms)  netCPU  avgCpuCount     nDoc  topK  fanout  maxConn  
beamWidth  quantized  visited  index(s)  index_docs/s  force_merge(s)  
num_segments  index_size(MB)  vec_disk(MB)  vec_RAM(MB)  indexType
    0.742        0.277   0.272        0.982  5000000   100      50       48     
   128         no     1604    107.16      46658.33          104.35             
1         2211.86      1907.349     1907.349       HNSW
    0.782        0.306   0.301        0.984  5000000   100      50       48     
   256         no     1852    207.64      24080.49          193.89             
1         2273.83      1907.349     1907.349       HNSW
    0.808        0.343   0.338        0.985  5000000   100      50       48     
   512         no     2123    375.13      13328.82          380.45             
1         2336.24      1907.349     1907.349       HNSW
    0.825        0.362   0.357        0.986  5000000   100      50       48     
   768         no     2294    582.56       8582.85          622.42             
1         2372.60      1907.349     1907.349       HNSW
   ```
   
   If we look at the 0.779 recall in candidate vs. 0.782 in baseline I think 
the baseline definitely wins.. So for now I'll just close this PR. Tho I think 
some ideas here might be able to improve this overall performance so someone 
else/me probably can take a look in the future and grab some ideas.


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to