[ 
https://issues.apache.org/jira/browse/MADLIB-1230?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16459852#comment-16459852
 ] 

Frank McQuillan commented on MADLIB-1230:
-----------------------------------------

When I tries with DT, I got
{code:java}
InternalError: (psycopg2.InternalError) plpy.Error: Decision tree: None of the 
input features are valid
CONTEXT:  Traceback (most recent call last):
  PL/Python function "tree_train", line 25, in <module>
    null_handling_params, verbose_mode)
  PL/Python function "tree_train", line 492, in tree_train
  PL/Python function "tree_train", line 271, in _get_tree_states
PL/Python function "tree_train"
 [SQL: "SELECT madlib.tree_train('gcmt_cars_svec',\n                           
'gcmt_cars_svec_output',\n                           'id',\n                    
       'mpg',\n                           'features::madlib.svec::float8[]',\n  
                         '',  -- exclude columns\n                         
'gini',\n                         NULL,  -- grouping columns\n                  
       NULL,\n                           5,3,1,10\n                           
);"]
{code}

> DT: Database crashes when feature is an svec array
> --------------------------------------------------
>
>                 Key: MADLIB-1230
>                 URL: https://issues.apache.org/jira/browse/MADLIB-1230
>             Project: Apache MADlib
>          Issue Type: Task
>          Components: Module: Decision Tree
>            Reporter: Rahul Iyer
>            Assignee: Rahul Iyer
>            Priority: Major
>         Attachments: dt_svec_feature_bug.sql
>
>
> In the forest_training function in the madlib schema, trying to cast a sparse 
> vector into the features parameter is leading to a PANIC. Is there a way to 
> allow sparse vectors to be used as part of forest training?
>  
>  



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to