[ https://issues.apache.org/jira/browse/MADLIB-1061?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16758517#comment-16758517 ]
Frank McQuillan commented on MADLIB-1061: ----------------------------------------- Here is a proposed changes to the knn interface: {code} knn( point_source, -- mandatory params point_column_name, point_id, label_column_name, test_source, test_column_name, test_id, output_table, -- optional params k, output_neighbors, fn_dist, weighted_avg, algorithm, algorithm_params ) algorithm (optional) TEXT, default: 'brute_force'. Name of the algorithm used to compute the nearest neighbors. Options are 'brute_force' of 'kd_tree'. algorithm_params (optional) TEXT, default 'depth=3, leaf_nodes=2` Comma-delimited list of name-value pairs for the kd-tree algorithm. Specifies the depth of the kd-tree and the number of leaf nodes to use, at the specified depth, when searching for nearest neighbors. {code} > Additional computation methods for k-NN - kd tree > ------------------------------------------------- > > Key: MADLIB-1061 > URL: https://issues.apache.org/jira/browse/MADLIB-1061 > Project: Apache MADlib > Issue Type: New Feature > Components: k-NN > Reporter: Frank McQuillan > Assignee: Orhan Kislal > Priority: Major > Labels: starter > Fix For: v1.16 > > Attachments: KNN-chart-data.pdf, KNN-charts.pdf, KNN-raw.pdf, > KNN-w-KD-tree-leaf-node-only.pdf, Sheet1-KNN-perf-num-features.pdf, > Sheet2-KNN-tree-construction.pdf, Sheet3-KNN-tree-depth.pdf > > > Follow on to > https://issues.apache.org/jira/browse/MADLIB-927 > which uses brute force. > Determine other k-NN algos to implement. From > http://scikit-learn.org/stable/modules/neighbors.html > candidates are: > * K-D Tree > * Ball Tree > * Other? > This JIRA is to implement K-D tree. -- This message was sent by Atlassian JIRA (v7.6.3#76005)