Frank McQuillan created MADLIB-1452: ---------------------------------------
Summary: Add top n to evalute() Key: MADLIB-1452 URL: https://issues.apache.org/jira/browse/MADLIB-1452 Project: Apache MADlib Issue Type: Improvement Components: Deep Learning Reporter: Frank McQuillan Fix For: v1.18.0 Applies to https://madlib.apache.org/docs/latest/group__grp__keras.html#keras_evaluate & https://madlib.apache.org/docs/latest/group__grp__keras__run__model__selection.html#keras_evaluate Add a new parameter to the evaluate interface: {code} madlib_keras_evaluate( model_table, test_table, output_table, use_gpus, mst_key, top_n -- new parameter ) {code} {code} top_n (optional) INTEGER[], default {1}. Array of top values to compute accuracy percentages using the metric from the training set. E.g., {1, 5, 10} means compute the top-1, top-5 and top-10 classification accuracies. {code} Add 2 new columns to the right side of the output table: {code} output_table TEXT. Name of table that validation output will be written to. Table contains: loss Loss value on evaluation dataset. metric Metric value on evaluation dataset, where 'metrics_type' below identifies the type of metric. metrics_type Type of metric used that was used in the training step. top_n_accuracy Array of percentage accuracies as per metric _type top_n Array defining the top n values used. {code} -- This message was sent by Atlassian Jira (v8.3.4#803005)