Frank McQuillan created MADLIB-1452:
---------------------------------------

             Summary: Add top n to evalute()
                 Key: MADLIB-1452
                 URL: https://issues.apache.org/jira/browse/MADLIB-1452
             Project: Apache MADlib
          Issue Type: Improvement
          Components: Deep Learning
            Reporter: Frank McQuillan
             Fix For: v1.18.0


Applies to 
https://madlib.apache.org/docs/latest/group__grp__keras.html#keras_evaluate
&
https://madlib.apache.org/docs/latest/group__grp__keras__run__model__selection.html#keras_evaluate

Add a new parameter to the evaluate interface:
{code}
madlib_keras_evaluate(
    model_table,
    test_table,
    output_table,
    use_gpus,
    mst_key,
    top_n                 -- new parameter
    )
{code}

{code}
 top_n (optional)
INTEGER[], default {1}.  Array of top values to compute accuracy percentages 
using the metric from the training set.  E.g., {1, 5, 10} means compute the 
top-1, top-5 and top-10 classification accuracies.
{code}

Add 2 new columns to the right side of the output table:
{code}
output_table
TEXT. Name of table that validation output will be written to. Table contains:
loss                                        Loss value on evaluation dataset.
metric                              Metric value on evaluation dataset, where 
'metrics_type' below identifies the type of metric.
metrics_type                        Type of metric used that was used in the 
training step.
top_n_accuracy                Array of percentage accuracies as per metric _type
top_n                                  Array defining the top n values used.
{code}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to