[ https://issues.apache.org/jira/browse/MADLIB-1452?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Frank McQuillan reassigned MADLIB-1452: --------------------------------------- Assignee: Orhan Kislal > Add top n to evalute() > ---------------------- > > Key: MADLIB-1452 > URL: https://issues.apache.org/jira/browse/MADLIB-1452 > Project: Apache MADlib > Issue Type: Improvement > Components: Deep Learning > Reporter: Frank McQuillan > Assignee: Orhan Kislal > Priority: Major > Fix For: v1.18.0 > > > Applies to > https://madlib.apache.org/docs/latest/group__grp__keras.html#keras_evaluate > & > https://madlib.apache.org/docs/latest/group__grp__keras__run__model__selection.html#keras_evaluate > Add a new parameter to the evaluate interface: > {code} > madlib_keras_evaluate( > model_table, > test_table, > output_table, > use_gpus, > mst_key, > top_n -- new parameter > ) > {code} > {code} > top_n (optional) > INTEGER[], default {1}. Array of top values to compute accuracy percentages > using the metric from the training set. E.g., {1, 5, 10} means compute the > top-1, top-5 and top-10 classification accuracies. > {code} > Add 2 new columns to the right side of the output table: > {code} > output_table > TEXT. Name of table that validation output will be written to. Table contains: > loss Loss value on evaluation dataset. > metric Metric value on evaluation dataset, > where 'metrics_type' below identifies the type of metric. > metrics_type Type of metric used that was used in the > training step. > top_n_accuracy Array of percentage accuracies as per metric > _type > top_n Array defining the top n values used. > {code} -- This message was sent by Atlassian Jira (v8.3.4#803005)