[ 
https://issues.apache.org/jira/browse/MADLIB-1451?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Frank McQuillan resolved MADLIB-1451.
-------------------------------------
    Resolution: Fixed

https://github.com/apache/madlib/pull/514

> DL: Improve output of predict
> -----------------------------
>
>                 Key: MADLIB-1451
>                 URL: https://issues.apache.org/jira/browse/MADLIB-1451
>             Project: Apache MADlib
>          Issue Type: Improvement
>          Components: Deep Learning
>            Reporter: Frank McQuillan
>            Assignee: Orhan Kislal
>            Priority: Minor
>             Fix For: v1.18.0
>
>
> **Story**
> Applies to 
> https://madlib.apache.org/docs/latest/group__grp__keras__run__model__selection.html#keras_predict
> &
> https://madlib.apache.org/docs/latest/group__grp__keras.html#keras_predict
> & 
> https://madlib.apache.org/docs/latest/group__grp__keras.html#keras_predict_byom
> Idea:
> Only want to run predict once and operate on the output table.  You should 
> not have to run predict over again to get a different format (e.g, top 1 vs. 
> top 5), which would be inefficient.  To do this we change the meaning of the 
> param `pred_type` :
> {code}
> pred_type (optional)
> TEXT, default: 'all'. Type of output desired, where 'all' gives predictions 
> for all classes and their associated 
> probabilities.  Alternatively, you can specify a filter for top n or minimum 
> probability.  For top n, use 
> an INTEGER > 0 to indicate the top ranked probabilities to output.  For 
> minimum probability, specify 
> a REAL value between 0.0 and 1.0 for the cutoff.
> {code}
> table output format
> {code}
> id    |       class                   | probability   |       rank
> ----+-------------------+---------------+----------
> 2     |       Iris-setosa     | 0.8704131             | 1
> 2     |       Iris-versicolor | 0.09302262    | 2
> 2     |       Iris-virginica  | 0.036564212   | 3
> 9     |       Iris-virginica  | 0.7704131             | 1
> 9     |       Iris-versicolor | 0.19302262    | 2
> 9     |       Iris-setosa     | 0.136564212   | 3
> etc.
> {code}
> **Open questions**
> 1) Will the above work OK with predict BYOM?



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to