Frank McQuillan created MADLIB-1454:
---------------------------------------

             Summary: DL - Write so far best to console for autoML methods 
                 Key: MADLIB-1454
                 URL: https://issues.apache.org/jira/browse/MADLIB-1454
             Project: Apache MADlib
          Issue Type: Improvement
          Components: Deep Learning
            Reporter: Frank McQuillan


For Hyperband, write the "best so far" to the console so that user knows how 
things are progressing.

Note need to keep track of global best, it might not be the one from the last 
iteration.

Change console output from:
{code}
INFO:  *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 
iterations ***
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  
        Time for training in iteration 1: 9.76507210732 sec
DETAIL:  
        Training set after iteration 1:
        mst_key=2: metric=0.683333337307, loss=0.626947939396
        mst_key=8: metric=0.683333337307, loss=0.556752383709
        mst_key=3: metric=0.683333337307, loss=0.604624867439
        mst_key=6: metric=0.324999988079, loss=1.01775479317
        mst_key=1: metric=0.691666662693, loss=0.918690085411
        mst_key=7: metric=0.324999988079, loss=1.09102141857
        mst_key=9: metric=0.683333337307, loss=0.615454554558
        mst_key=4: metric=0.774999976158, loss=0.571036159992
        mst_key=5: metric=0.324999988079, loss=1.10194396973
        Validation set after iteration 1:
        mst_key=2: metric=0.600000023842, loss=0.67598927021
        mst_key=8: metric=0.600000023842, loss=0.62441021204
        mst_key=3: metric=0.600000023842, loss=0.669852972031
        mst_key=6: metric=0.366666674614, loss=0.984160840511
        mst_key=1: metric=0.600000023842, loss=0.923334658146
        mst_key=7: metric=0.366666674614, loss=1.07771503925
        mst_key=9: metric=0.600000023842, loss=0.699421286583
        mst_key=4: metric=0.866666674614, loss=0.607381045818
        mst_key=5: metric=0.366666674614, loss=1.09954810143
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 configs 
under bracket=1 & round=0 with 3 iterations ***
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  
        Time for training in iteration 1: 4.84015893936 sec
DETAIL:  
        Training set after iteration 1:
        mst_key=8: metric=0.925000011921, loss=0.353324443102
        mst_key=4: metric=0.949999988079, loss=0.424594521523
        mst_key=11: metric=0.675000011921, loss=0.846702694893
        mst_key=3: metric=0.808333337307, loss=0.382121056318
        mst_key=12: metric=0.916666686535, loss=0.384196609259
        mst_key=10: metric=0.683333337307, loss=0.701473772526
        Validation set after iteration 1:
        mst_key=8: metric=0.933333337307, loss=0.42084941268
        mst_key=4: metric=0.933333337307, loss=0.476406633854
        mst_key=11: metric=0.600000023842, loss=0.854079544544
        mst_key=3: metric=0.899999976158, loss=0.417265832424
        mst_key=12: metric=0.899999976158, loss=0.450416505337
        mst_key=10: metric=0.600000023842, loss=0.728042304516
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  
        Time for training in iteration 2: 4.80181288719 sec
DETAIL:  
        Training set after iteration 2:
        mst_key=8: metric=0.941666662693, loss=0.286089539528
        mst_key=4: metric=0.925000011921, loss=0.373028248549
        mst_key=11: metric=0.683333337307, loss=0.609232187271
        mst_key=3: metric=0.833333313465, loss=0.291878581047
        mst_key=12: metric=0.908333361149, loss=0.300016224384
        mst_key=10: metric=0.983333349228, loss=0.382896214724
        Validation set after iteration 2:
        mst_key=8: metric=0.933333337307, loss=0.338641613722
        mst_key=4: metric=1.0, loss=0.436057478189
        mst_key=11: metric=0.600000023842, loss=0.658753097057
        mst_key=3: metric=0.766666650772, loss=0.339546382427
        mst_key=12: metric=0.933333337307, loss=0.341486483812
        mst_key=10: metric=1.0, loss=0.442664504051
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  
        Time for training in iteration 3: 5.17401909828 sec
DETAIL:  
        Training set after iteration 3:
        mst_key=8: metric=0.966666638851, loss=0.196135208011
        mst_key=4: metric=0.958333313465, loss=0.243382230401
        mst_key=11: metric=0.941666662693, loss=0.395315974951
        mst_key=3: metric=0.966666638851, loss=0.171766787767
        mst_key=12: metric=0.866666674614, loss=0.283820331097
        mst_key=10: metric=0.833333313465, loss=0.313775897026
        Validation set after iteration 3:
        mst_key=8: metric=0.966666638851, loss=0.214255988598
        mst_key=4: metric=1.0, loss=0.268849998713
        mst_key=11: metric=0.899999976158, loss=0.45996800065
        mst_key=3: metric=1.0, loss=0.157373458147
        mst_key=12: metric=0.800000011921, loss=0.340971261263
        mst_key=10: metric=0.766666650772, loss=0.365937292576
CONTEXT:  PL/Python function "madlib_keras_automl"
{code}
to
{code}
INFO:  *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 
iterations ***
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  
        Time for training in iteration 1: 9.76507210732 sec
DETAIL:  
        Training set after iteration 1:
        mst_key=2: metric=0.683333337307, loss=0.626947939396
        mst_key=8: metric=0.683333337307, loss=0.556752383709
        mst_key=3: metric=0.683333337307, loss=0.604624867439
        mst_key=6: metric=0.324999988079, loss=1.01775479317
        mst_key=1: metric=0.691666662693, loss=0.918690085411
        mst_key=7: metric=0.324999988079, loss=1.09102141857
        mst_key=9: metric=0.683333337307, loss=0.615454554558
        mst_key=4: metric=0.774999976158, loss=0.571036159992
        mst_key=5: metric=0.324999988079, loss=1.1019439697
        Validation set after iteration 1:
        mst_key=2: metric=0.600000023842, loss=0.67598927021
        mst_key=8: metric=0.600000023842, loss=0.62441021204
        mst_key=3: metric=0.600000023842, loss=0.669852972031
        mst_key=6: metric=0.366666674614, loss=0.984160840511
        mst_key=1: metric=0.600000023842, loss=0.923334658146
        mst_key=7: metric=0.366666674614, loss=1.07771503925
        mst_key=9: metric=0.600000023842, loss=0.699421286583
        mst_key=4: metric=0.866666674614, loss=0.607381045818
        mst_key=5: metric=0.366666674614, loss=1.09954810143

        Best training metric so far:
        mst_key=4: metric=0.774999976158, loss=0.571036159992
        Best validation metric so far:
        mst_key=4: metric=0.866666674614, loss=0.607381045818

CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 configs 
under bracket=1 & round=0 with 3 iterations ***
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  
        Time for training in iteration 1: 4.84015893936 sec
DETAIL:  
        Training set after iteration 1:
        mst_key=8: metric=0.925000011921, loss=0.353324443102
        mst_key=4: metric=0.949999988079, loss=0.424594521523
        mst_key=11: metric=0.675000011921, loss=0.846702694893
        mst_key=3: metric=0.808333337307, loss=0.382121056318
        mst_key=12: metric=0.916666686535, loss=0.384196609259
        mst_key=10: metric=0.683333337307, loss=0.701473772526
    Best training metric in iteration 1: 
        mst_key=4: metric=0.949999988079, loss=0.424594521523

        Validation set after iteration 1:
        mst_key=8: metric=0.933333337307, loss=0.42084941268
        mst_key=4: metric=0.933333337307, loss=0.476406633854
        mst_key=11: metric=0.600000023842, loss=0.854079544544
        mst_key=3: metric=0.899999976158, loss=0.417265832424
        mst_key=12: metric=0.899999976158, loss=0.450416505337
        mst_key=10: metric=0.600000023842, loss=0.728042304516
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  
        Time for training in iteration 2: 4.80181288719 sec
DETAIL:  
        Training set after iteration 2:
        mst_key=8: metric=0.941666662693, loss=0.286089539528
        mst_key=4: metric=0.925000011921, loss=0.373028248549
        mst_key=11: metric=0.683333337307, loss=0.609232187271
        mst_key=3: metric=0.833333313465, loss=0.291878581047
        mst_key=12: metric=0.908333361149, loss=0.300016224384
        mst_key=10: metric=0.983333349228, loss=0.382896214724
        Validation set after iteration 2:
        mst_key=8: metric=0.933333337307, loss=0.338641613722
        mst_key=4: metric=1.0, loss=0.436057478189
        mst_key=11: metric=0.600000023842, loss=0.658753097057
        mst_key=3: metric=0.766666650772, loss=0.339546382427
        mst_key=12: metric=0.933333337307, loss=0.341486483812
        mst_key=10: metric=1.0, loss=0.442664504051
CONTEXT:  PL/Python function "madlib_keras_automl"
INFO:  
        Time for training in iteration 3: 5.17401909828 sec
DETAIL:  
        Training set after iteration 3:
        mst_key=8: metric=0.966666638851, loss=0.196135208011
        mst_key=4: metric=0.958333313465, loss=0.243382230401
        mst_key=11: metric=0.941666662693, loss=0.395315974951
        mst_key=3: metric=0.966666638851, loss=0.171766787767
        mst_key=12: metric=0.866666674614, loss=0.283820331097
        mst_key=10: metric=0.833333313465, loss=0.313775897026
        Validation set after iteration 3:
        mst_key=8: metric=0.966666638851, loss=0.214255988598
        mst_key=4: metric=1.0, loss=0.268849998713
        mst_key=11: metric=0.899999976158, loss=0.45996800065
        mst_key=3: metric=1.0, loss=0.157373458147
        mst_key=12: metric=0.800000011921, loss=0.340971261263
        mst_key=10: metric=0.766666650772, loss=0.365937292576

        Best training metric so far:
        mst_key=8: metric=0.966666638851, loss=0.196135208011
        Best validation metric so far:
        mst_key=8: metric=0.966666638851, loss=0.214255988598

CONTEXT:  PL/Python function "madlib_keras_automl"
{code}




--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to