Frank McQuillan created MADLIB-1454: ---------------------------------------
Summary: DL - Write so far best to console for autoML methods Key: MADLIB-1454 URL: https://issues.apache.org/jira/browse/MADLIB-1454 Project: Apache MADlib Issue Type: Improvement Components: Deep Learning Reporter: Frank McQuillan For Hyperband, write the "best so far" to the console so that user knows how things are progressing. Note need to keep track of global best, it might not be the one from the last iteration. Change console output from: {code} INFO: *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 iterations *** CONTEXT: PL/Python function "madlib_keras_automl" INFO: Time for training in iteration 1: 9.76507210732 sec DETAIL: Training set after iteration 1: mst_key=2: metric=0.683333337307, loss=0.626947939396 mst_key=8: metric=0.683333337307, loss=0.556752383709 mst_key=3: metric=0.683333337307, loss=0.604624867439 mst_key=6: metric=0.324999988079, loss=1.01775479317 mst_key=1: metric=0.691666662693, loss=0.918690085411 mst_key=7: metric=0.324999988079, loss=1.09102141857 mst_key=9: metric=0.683333337307, loss=0.615454554558 mst_key=4: metric=0.774999976158, loss=0.571036159992 mst_key=5: metric=0.324999988079, loss=1.10194396973 Validation set after iteration 1: mst_key=2: metric=0.600000023842, loss=0.67598927021 mst_key=8: metric=0.600000023842, loss=0.62441021204 mst_key=3: metric=0.600000023842, loss=0.669852972031 mst_key=6: metric=0.366666674614, loss=0.984160840511 mst_key=1: metric=0.600000023842, loss=0.923334658146 mst_key=7: metric=0.366666674614, loss=1.07771503925 mst_key=9: metric=0.600000023842, loss=0.699421286583 mst_key=4: metric=0.866666674614, loss=0.607381045818 mst_key=5: metric=0.366666674614, loss=1.09954810143 CONTEXT: PL/Python function "madlib_keras_automl" INFO: *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 configs under bracket=1 & round=0 with 3 iterations *** CONTEXT: PL/Python function "madlib_keras_automl" INFO: Time for training in iteration 1: 4.84015893936 sec DETAIL: Training set after iteration 1: mst_key=8: metric=0.925000011921, loss=0.353324443102 mst_key=4: metric=0.949999988079, loss=0.424594521523 mst_key=11: metric=0.675000011921, loss=0.846702694893 mst_key=3: metric=0.808333337307, loss=0.382121056318 mst_key=12: metric=0.916666686535, loss=0.384196609259 mst_key=10: metric=0.683333337307, loss=0.701473772526 Validation set after iteration 1: mst_key=8: metric=0.933333337307, loss=0.42084941268 mst_key=4: metric=0.933333337307, loss=0.476406633854 mst_key=11: metric=0.600000023842, loss=0.854079544544 mst_key=3: metric=0.899999976158, loss=0.417265832424 mst_key=12: metric=0.899999976158, loss=0.450416505337 mst_key=10: metric=0.600000023842, loss=0.728042304516 CONTEXT: PL/Python function "madlib_keras_automl" INFO: Time for training in iteration 2: 4.80181288719 sec DETAIL: Training set after iteration 2: mst_key=8: metric=0.941666662693, loss=0.286089539528 mst_key=4: metric=0.925000011921, loss=0.373028248549 mst_key=11: metric=0.683333337307, loss=0.609232187271 mst_key=3: metric=0.833333313465, loss=0.291878581047 mst_key=12: metric=0.908333361149, loss=0.300016224384 mst_key=10: metric=0.983333349228, loss=0.382896214724 Validation set after iteration 2: mst_key=8: metric=0.933333337307, loss=0.338641613722 mst_key=4: metric=1.0, loss=0.436057478189 mst_key=11: metric=0.600000023842, loss=0.658753097057 mst_key=3: metric=0.766666650772, loss=0.339546382427 mst_key=12: metric=0.933333337307, loss=0.341486483812 mst_key=10: metric=1.0, loss=0.442664504051 CONTEXT: PL/Python function "madlib_keras_automl" INFO: Time for training in iteration 3: 5.17401909828 sec DETAIL: Training set after iteration 3: mst_key=8: metric=0.966666638851, loss=0.196135208011 mst_key=4: metric=0.958333313465, loss=0.243382230401 mst_key=11: metric=0.941666662693, loss=0.395315974951 mst_key=3: metric=0.966666638851, loss=0.171766787767 mst_key=12: metric=0.866666674614, loss=0.283820331097 mst_key=10: metric=0.833333313465, loss=0.313775897026 Validation set after iteration 3: mst_key=8: metric=0.966666638851, loss=0.214255988598 mst_key=4: metric=1.0, loss=0.268849998713 mst_key=11: metric=0.899999976158, loss=0.45996800065 mst_key=3: metric=1.0, loss=0.157373458147 mst_key=12: metric=0.800000011921, loss=0.340971261263 mst_key=10: metric=0.766666650772, loss=0.365937292576 CONTEXT: PL/Python function "madlib_keras_automl" {code} to {code} INFO: *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 iterations *** CONTEXT: PL/Python function "madlib_keras_automl" INFO: Time for training in iteration 1: 9.76507210732 sec DETAIL: Training set after iteration 1: mst_key=2: metric=0.683333337307, loss=0.626947939396 mst_key=8: metric=0.683333337307, loss=0.556752383709 mst_key=3: metric=0.683333337307, loss=0.604624867439 mst_key=6: metric=0.324999988079, loss=1.01775479317 mst_key=1: metric=0.691666662693, loss=0.918690085411 mst_key=7: metric=0.324999988079, loss=1.09102141857 mst_key=9: metric=0.683333337307, loss=0.615454554558 mst_key=4: metric=0.774999976158, loss=0.571036159992 mst_key=5: metric=0.324999988079, loss=1.1019439697 Validation set after iteration 1: mst_key=2: metric=0.600000023842, loss=0.67598927021 mst_key=8: metric=0.600000023842, loss=0.62441021204 mst_key=3: metric=0.600000023842, loss=0.669852972031 mst_key=6: metric=0.366666674614, loss=0.984160840511 mst_key=1: metric=0.600000023842, loss=0.923334658146 mst_key=7: metric=0.366666674614, loss=1.07771503925 mst_key=9: metric=0.600000023842, loss=0.699421286583 mst_key=4: metric=0.866666674614, loss=0.607381045818 mst_key=5: metric=0.366666674614, loss=1.09954810143 Best training metric so far: mst_key=4: metric=0.774999976158, loss=0.571036159992 Best validation metric so far: mst_key=4: metric=0.866666674614, loss=0.607381045818 CONTEXT: PL/Python function "madlib_keras_automl" INFO: *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 configs under bracket=1 & round=0 with 3 iterations *** CONTEXT: PL/Python function "madlib_keras_automl" INFO: Time for training in iteration 1: 4.84015893936 sec DETAIL: Training set after iteration 1: mst_key=8: metric=0.925000011921, loss=0.353324443102 mst_key=4: metric=0.949999988079, loss=0.424594521523 mst_key=11: metric=0.675000011921, loss=0.846702694893 mst_key=3: metric=0.808333337307, loss=0.382121056318 mst_key=12: metric=0.916666686535, loss=0.384196609259 mst_key=10: metric=0.683333337307, loss=0.701473772526 Best training metric in iteration 1: mst_key=4: metric=0.949999988079, loss=0.424594521523 Validation set after iteration 1: mst_key=8: metric=0.933333337307, loss=0.42084941268 mst_key=4: metric=0.933333337307, loss=0.476406633854 mst_key=11: metric=0.600000023842, loss=0.854079544544 mst_key=3: metric=0.899999976158, loss=0.417265832424 mst_key=12: metric=0.899999976158, loss=0.450416505337 mst_key=10: metric=0.600000023842, loss=0.728042304516 CONTEXT: PL/Python function "madlib_keras_automl" INFO: Time for training in iteration 2: 4.80181288719 sec DETAIL: Training set after iteration 2: mst_key=8: metric=0.941666662693, loss=0.286089539528 mst_key=4: metric=0.925000011921, loss=0.373028248549 mst_key=11: metric=0.683333337307, loss=0.609232187271 mst_key=3: metric=0.833333313465, loss=0.291878581047 mst_key=12: metric=0.908333361149, loss=0.300016224384 mst_key=10: metric=0.983333349228, loss=0.382896214724 Validation set after iteration 2: mst_key=8: metric=0.933333337307, loss=0.338641613722 mst_key=4: metric=1.0, loss=0.436057478189 mst_key=11: metric=0.600000023842, loss=0.658753097057 mst_key=3: metric=0.766666650772, loss=0.339546382427 mst_key=12: metric=0.933333337307, loss=0.341486483812 mst_key=10: metric=1.0, loss=0.442664504051 CONTEXT: PL/Python function "madlib_keras_automl" INFO: Time for training in iteration 3: 5.17401909828 sec DETAIL: Training set after iteration 3: mst_key=8: metric=0.966666638851, loss=0.196135208011 mst_key=4: metric=0.958333313465, loss=0.243382230401 mst_key=11: metric=0.941666662693, loss=0.395315974951 mst_key=3: metric=0.966666638851, loss=0.171766787767 mst_key=12: metric=0.866666674614, loss=0.283820331097 mst_key=10: metric=0.833333313465, loss=0.313775897026 Validation set after iteration 3: mst_key=8: metric=0.966666638851, loss=0.214255988598 mst_key=4: metric=1.0, loss=0.268849998713 mst_key=11: metric=0.899999976158, loss=0.45996800065 mst_key=3: metric=1.0, loss=0.157373458147 mst_key=12: metric=0.800000011921, loss=0.340971261263 mst_key=10: metric=0.766666650772, loss=0.365937292576 Best training metric so far: mst_key=8: metric=0.966666638851, loss=0.196135208011 Best validation metric so far: mst_key=8: metric=0.966666638851, loss=0.214255988598 CONTEXT: PL/Python function "madlib_keras_automl" {code} -- This message was sent by Atlassian Jira (v8.3.4#803005)