[ 
https://issues.apache.org/jira/browse/MADLIB-1454?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Frank McQuillan updated MADLIB-1454:
------------------------------------
    Summary: DL - Write best so far to console for autoML methods   (was: DL - 
Write so far best to console for autoML methods )

> DL - Write best so far to console for autoML methods 
> -----------------------------------------------------
>
>                 Key: MADLIB-1454
>                 URL: https://issues.apache.org/jira/browse/MADLIB-1454
>             Project: Apache MADlib
>          Issue Type: Improvement
>          Components: Deep Learning
>            Reporter: Frank McQuillan
>            Assignee: Advitya Gemawat
>            Priority: Minor
>             Fix For: v1.18.0
>
>
> For Hyperband, write the "best so far" to the console so that user knows how 
> things are progressing.
> Note need to keep track of global best, it might not be the one from the last 
> iteration.
> Change console output from:
> {code}
> INFO:  *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 
> iterations ***
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  
>       Time for training in iteration 1: 9.76507210732 sec
> DETAIL:  
>       Training set after iteration 1:
>       mst_key=2: metric=0.683333337307, loss=0.626947939396
>       mst_key=8: metric=0.683333337307, loss=0.556752383709
>       mst_key=3: metric=0.683333337307, loss=0.604624867439
>       mst_key=6: metric=0.324999988079, loss=1.01775479317
>       mst_key=1: metric=0.691666662693, loss=0.918690085411
>       mst_key=7: metric=0.324999988079, loss=1.09102141857
>       mst_key=9: metric=0.683333337307, loss=0.615454554558
>       mst_key=4: metric=0.774999976158, loss=0.571036159992
>       mst_key=5: metric=0.324999988079, loss=1.10194396973
>       Validation set after iteration 1:
>       mst_key=2: metric=0.600000023842, loss=0.67598927021
>       mst_key=8: metric=0.600000023842, loss=0.62441021204
>       mst_key=3: metric=0.600000023842, loss=0.669852972031
>       mst_key=6: metric=0.366666674614, loss=0.984160840511
>       mst_key=1: metric=0.600000023842, loss=0.923334658146
>       mst_key=7: metric=0.366666674614, loss=1.07771503925
>       mst_key=9: metric=0.600000023842, loss=0.699421286583
>       mst_key=4: metric=0.866666674614, loss=0.607381045818
>       mst_key=5: metric=0.366666674614, loss=1.09954810143
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 
> configs under bracket=1 & round=0 with 3 iterations ***
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  
>       Time for training in iteration 1: 4.84015893936 sec
> DETAIL:  
>       Training set after iteration 1:
>       mst_key=8: metric=0.925000011921, loss=0.353324443102
>       mst_key=4: metric=0.949999988079, loss=0.424594521523
>       mst_key=11: metric=0.675000011921, loss=0.846702694893
>       mst_key=3: metric=0.808333337307, loss=0.382121056318
>       mst_key=12: metric=0.916666686535, loss=0.384196609259
>       mst_key=10: metric=0.683333337307, loss=0.701473772526
>       Validation set after iteration 1:
>       mst_key=8: metric=0.933333337307, loss=0.42084941268
>       mst_key=4: metric=0.933333337307, loss=0.476406633854
>       mst_key=11: metric=0.600000023842, loss=0.854079544544
>       mst_key=3: metric=0.899999976158, loss=0.417265832424
>       mst_key=12: metric=0.899999976158, loss=0.450416505337
>       mst_key=10: metric=0.600000023842, loss=0.728042304516
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  
>       Time for training in iteration 2: 4.80181288719 sec
> DETAIL:  
>       Training set after iteration 2:
>       mst_key=8: metric=0.941666662693, loss=0.286089539528
>       mst_key=4: metric=0.925000011921, loss=0.373028248549
>       mst_key=11: metric=0.683333337307, loss=0.609232187271
>       mst_key=3: metric=0.833333313465, loss=0.291878581047
>       mst_key=12: metric=0.908333361149, loss=0.300016224384
>       mst_key=10: metric=0.983333349228, loss=0.382896214724
>       Validation set after iteration 2:
>       mst_key=8: metric=0.933333337307, loss=0.338641613722
>       mst_key=4: metric=1.0, loss=0.436057478189
>       mst_key=11: metric=0.600000023842, loss=0.658753097057
>       mst_key=3: metric=0.766666650772, loss=0.339546382427
>       mst_key=12: metric=0.933333337307, loss=0.341486483812
>       mst_key=10: metric=1.0, loss=0.442664504051
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  
>       Time for training in iteration 3: 5.17401909828 sec
> DETAIL:  
>       Training set after iteration 3:
>       mst_key=8: metric=0.966666638851, loss=0.196135208011
>       mst_key=4: metric=0.958333313465, loss=0.243382230401
>       mst_key=11: metric=0.941666662693, loss=0.395315974951
>       mst_key=3: metric=0.966666638851, loss=0.171766787767
>       mst_key=12: metric=0.866666674614, loss=0.283820331097
>       mst_key=10: metric=0.833333313465, loss=0.313775897026
>       Validation set after iteration 3:
>       mst_key=8: metric=0.966666638851, loss=0.214255988598
>       mst_key=4: metric=1.0, loss=0.268849998713
>       mst_key=11: metric=0.899999976158, loss=0.45996800065
>       mst_key=3: metric=1.0, loss=0.157373458147
>       mst_key=12: metric=0.800000011921, loss=0.340971261263
>       mst_key=10: metric=0.766666650772, loss=0.365937292576
> CONTEXT:  PL/Python function "madlib_keras_automl"
> {code}
> to
> {code}
> INFO:  *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 
> iterations ***
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  
>       Time for training in iteration 1: 9.76507210732 sec
> DETAIL:  
>       Training set after iteration 1:
>       mst_key=2: metric=0.683333337307, loss=0.626947939396
>       mst_key=8: metric=0.683333337307, loss=0.556752383709
>       mst_key=3: metric=0.683333337307, loss=0.604624867439
>       mst_key=6: metric=0.324999988079, loss=1.01775479317
>       mst_key=1: metric=0.691666662693, loss=0.918690085411
>       mst_key=7: metric=0.324999988079, loss=1.09102141857
>       mst_key=9: metric=0.683333337307, loss=0.615454554558
>       mst_key=4: metric=0.774999976158, loss=0.571036159992
>       mst_key=5: metric=0.324999988079, loss=1.1019439697
>       Validation set after iteration 1:
>       mst_key=2: metric=0.600000023842, loss=0.67598927021
>       mst_key=8: metric=0.600000023842, loss=0.62441021204
>       mst_key=3: metric=0.600000023842, loss=0.669852972031
>       mst_key=6: metric=0.366666674614, loss=0.984160840511
>       mst_key=1: metric=0.600000023842, loss=0.923334658146
>       mst_key=7: metric=0.366666674614, loss=1.07771503925
>       mst_key=9: metric=0.600000023842, loss=0.699421286583
>       mst_key=4: metric=0.866666674614, loss=0.607381045818
>       mst_key=5: metric=0.366666674614, loss=1.09954810143
>       Best training metric so far:
>       mst_key=4: metric=0.774999976158, loss=0.571036159992
>       Best validation metric so far:
>       mst_key=4: metric=0.866666674614, loss=0.607381045818
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 
> configs under bracket=1 & round=0 with 3 iterations ***
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  
>       Time for training in iteration 1: 4.84015893936 sec
> DETAIL:  
>       Training set after iteration 1:
>       mst_key=8: metric=0.925000011921, loss=0.353324443102
>       mst_key=4: metric=0.949999988079, loss=0.424594521523
>       mst_key=11: metric=0.675000011921, loss=0.846702694893
>       mst_key=3: metric=0.808333337307, loss=0.382121056318
>       mst_key=12: metric=0.916666686535, loss=0.384196609259
>       mst_key=10: metric=0.683333337307, loss=0.701473772526
>     Best training metric in iteration 1: 
>       mst_key=4: metric=0.949999988079, loss=0.424594521523
>       Validation set after iteration 1:
>       mst_key=8: metric=0.933333337307, loss=0.42084941268
>       mst_key=4: metric=0.933333337307, loss=0.476406633854
>       mst_key=11: metric=0.600000023842, loss=0.854079544544
>       mst_key=3: metric=0.899999976158, loss=0.417265832424
>       mst_key=12: metric=0.899999976158, loss=0.450416505337
>       mst_key=10: metric=0.600000023842, loss=0.728042304516
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  
>       Time for training in iteration 2: 4.80181288719 sec
> DETAIL:  
>       Training set after iteration 2:
>       mst_key=8: metric=0.941666662693, loss=0.286089539528
>       mst_key=4: metric=0.925000011921, loss=0.373028248549
>       mst_key=11: metric=0.683333337307, loss=0.609232187271
>       mst_key=3: metric=0.833333313465, loss=0.291878581047
>       mst_key=12: metric=0.908333361149, loss=0.300016224384
>       mst_key=10: metric=0.983333349228, loss=0.382896214724
>       Validation set after iteration 2:
>       mst_key=8: metric=0.933333337307, loss=0.338641613722
>       mst_key=4: metric=1.0, loss=0.436057478189
>       mst_key=11: metric=0.600000023842, loss=0.658753097057
>       mst_key=3: metric=0.766666650772, loss=0.339546382427
>       mst_key=12: metric=0.933333337307, loss=0.341486483812
>       mst_key=10: metric=1.0, loss=0.442664504051
> CONTEXT:  PL/Python function "madlib_keras_automl"
> INFO:  
>       Time for training in iteration 3: 5.17401909828 sec
> DETAIL:  
>       Training set after iteration 3:
>       mst_key=8: metric=0.966666638851, loss=0.196135208011
>       mst_key=4: metric=0.958333313465, loss=0.243382230401
>       mst_key=11: metric=0.941666662693, loss=0.395315974951
>       mst_key=3: metric=0.966666638851, loss=0.171766787767
>       mst_key=12: metric=0.866666674614, loss=0.283820331097
>       mst_key=10: metric=0.833333313465, loss=0.313775897026
>       Validation set after iteration 3:
>       mst_key=8: metric=0.966666638851, loss=0.214255988598
>       mst_key=4: metric=1.0, loss=0.268849998713
>       mst_key=11: metric=0.899999976158, loss=0.45996800065
>       mst_key=3: metric=1.0, loss=0.157373458147
>       mst_key=12: metric=0.800000011921, loss=0.340971261263
>       mst_key=10: metric=0.766666650772, loss=0.365937292576
>       Best training metric so far:
>       mst_key=8: metric=0.966666638851, loss=0.196135208011
>       Best validation metric so far:
>       mst_key=8: metric=0.966666638851, loss=0.214255988598
> CONTEXT:  PL/Python function "madlib_keras_automl"
> {code}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to