[ https://issues.apache.org/jira/browse/MADLIB-1462?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Nikhil Kak updated MADLIB-1462: ------------------------------- Fix Version/s: v1.18.0 > DL - Fit multiple does not print timing for validation evaluate > --------------------------------------------------------------- > > Key: MADLIB-1462 > URL: https://issues.apache.org/jira/browse/MADLIB-1462 > Project: Apache MADlib > Issue Type: Improvement > Components: Deep Learning > Reporter: Nikhil Kak > Priority: Major > Fix For: v1.18.0 > > > Currently when running fit_multiple with validation dataset, we don't print > the timing for the validation runs > {code} > select madlib.madlib_keras_fit_multiple_model('cifar10_train_batched', > 'cifar10_out', 'cifar10_mst_table', 100, TRUE, 'cifar10_train_batched', 1); > INFO: > Time for training in iteration 1: 33.6217501163 sec > DETAIL: > Training set after iteration 1: > mst_key=12: metric=0.260340005159, loss=2.13081121445 > ... > mst_key=2: metric=0.164859995246, loss=2.25495767593 > Validation set after iteration 1: > mst_key=12: metric=0.260340005159, loss=2.13081121445 > ... > mst_key=2: metric=0.164859995246, loss=2.25495767593 > CONTEXT: PL/Python function "madlib_keras_fit_multiple_model" > INFO: > Time for training in iteration 2: 24.7699511051 sec > DETAIL: > .... > {code} > We should print the time it took to run validation evaluate for both training > and validation dataset > > If the user specifies only the training dataset, then we should add the > following to the existing output > 1. The cumulative time it took for all the msts to run eval for the training > dataset for that iteration > {code} > select > madlib.madlib_keras_fit_multiple_model('iris_data_packed','iris_multiple_model','mst_table_4row',2, > FALSE,NULL,1); > INFO: > Time for training in iteration 1: 2.24381709099 sec > DETAIL: > Training set after iteration 1: > mst_key=2: metric=0.333333343267, loss=1.33550834656 > mst_key=1: metric=0.333333343267, loss=1.12043237686 > mst_key=4: metric=0.333333343267, loss=3.90859818459 > mst_key=3: metric=0.333333343267, loss=4.37875080109 > Time for evaluating training dataset in iteration 1: 0.652065515518 > CONTEXT: PL/Python function "madlib_keras_fit_multiple_model" > INFO: > Time for training in iteration 2: 2.32056617737 sec > DETAIL: > Training set after iteration 2: > mst_key=2: metric=0.666666686535, loss=1.14192306995 > mst_key=1: metric=0.666666686535, loss=0.917088747025 > mst_key=4: metric=0.340000003576, loss=2.98958563805 > mst_key=3: metric=0.333333343267, loss=3.86314368248 > Time for evaluating training dataset in iteration 2: 0.679529428482 > {code} > If the user specifies a validation dataset, then we should add the following > to the existing output > 1. The cumulative time it took for all the msts to run eval for the training > dataset for that iteration > 1. The cumulative time it took for all the msts to run eval for the > validation dataset for that iteration > {code} > select > madlib.madlib_keras_fit_multiple_model('iris_data_packed','iris_multiple_model','mst_table_4row',2, > FALSE,'iris_data_packed',1); > INFO: > Time for training in iteration 1: 4.27021813393 sec > DETAIL: > Training set after iteration 1: > mst_key=2: metric=0.333333343267, loss=1.39633440971 > mst_key=1: metric=0.333333343267, loss=1.04632723331 > mst_key=4: metric=0.333333343267, loss=3.96611213684 > mst_key=3: metric=0.333333343267, loss=4.38052940369 > Time for evaluating training dataset in iteration 1: 0.649274587631 > Validation set after iteration 1: > mst_key=2: metric=0.333333343267, loss=1.39633440971 > mst_key=1: metric=0.333333343267, loss=1.04632723331 > mst_key=4: metric=0.333333343267, loss=3.96611213684 > mst_key=3: metric=0.333333343267, loss=4.38052940369 > Time for evaluating validation dataset in iteration 1: 0.75797867775 > CONTEXT: PL/Python function "madlib_keras_fit_multiple_model" > INFO: > Time for training in iteration 2: 2.1767308712 sec > DETAIL: > Training set after iteration 2: > mst_key=2: metric=0.666666686535, loss=1.10426521301 > mst_key=1: metric=0.666666686535, loss=1.02108848095 > mst_key=4: metric=0.333333343267, loss=3.10222005844 > mst_key=3: metric=0.333333343267, loss=3.85620188713 > Time for evaluating training dataset in iteration 2: 0.784633874893 > Validation set after iteration 2: > mst_key=2: metric=0.666666686535, loss=1.10426521301 > mst_key=1: metric=0.666666686535, loss=1.02108848095 > mst_key=4: metric=0.333333343267, loss=3.10222005844 > mst_key=3: metric=0.333333343267, loss=3.85620188713 > Time for evaluating validation dataset in iteration 2: 0.639858007431 > {code} -- This message was sent by Atlassian Jira (v8.3.4#803005)