Frank McQuillan created MADLIB-1471: ---------------------------------------
Summary: MLP weights param not working Key: MADLIB-1471 URL: https://issues.apache.org/jira/browse/MADLIB-1471 Project: Apache MADlib Issue Type: New Feature Components: Module: Neural Networks Reporter: Frank McQuillan Weights function not working for MLP: {code} DROP TABLE IF EXISTS temp1; CREATE TABLE temp1( id serial, attributes numeric[], class_text varchar, row_weight numeric ); INSERT INTO temp1(id, attributes, class_text, row_weight) VALUES (1,ARRAY[5.1,3.5,1.4,0.2],'Iris-setosa', 1.0), (2,ARRAY[4.9,3.0,1.4,0.2],'Iris-setosa', 1.0), (3,ARRAY[4.7,3.2,1.3,0.2],'Iris-setosa', 1.0), (4,ARRAY[4.6,3.1,1.5,0.2],'Iris-setosa', 1.0), (5,ARRAY[5.0,3.6,1.4,0.2],'Iris-setosa', 1.0), (6,ARRAY[5.4,3.9,1.7,0.4],'Iris-setosa', 1.0), (7,ARRAY[4.6,3.4,1.4,0.3],'Iris-setosa', 1.0), (8,ARRAY[5.0,3.4,1.5,0.2],'Iris-setosa', 1.0), (9,ARRAY[4.4,2.9,1.4,0.2],'Iris-setosa', 1.0), (10,ARRAY[4.9,3.1,1.5,0.1],'Iris-setosa', 1.0), (11,ARRAY[5.4,3.7,1.5,0.2],'Iris-setosa', 1.0), (12,ARRAY[4.8,3.4,1.6,0.2],'Iris-setosa', 1.0), (13,ARRAY[4.8,3.0,1.4,0.1],'Iris-setosa', 1.0), (14,ARRAY[4.3,3.0,1.1,0.1],'Iris-setosa', 1.0), (15,ARRAY[5.8,4.0,1.2,0.2],'Iris-setosa', 1.0), (16,ARRAY[5.7,4.4,1.5,0.4],'Iris-setosa', 1.0), (17,ARRAY[5.4,3.9,1.3,0.4],'Iris-setosa', 1.0), (18,ARRAY[5.1,3.5,1.4,0.3],'Iris-setosa', 1.0), (19,ARRAY[5.7,3.8,1.7,0.3],'Iris-setosa', 1.0), (20,ARRAY[5.1,3.8,1.5,0.3],'Iris-setosa', 1.0), (21,ARRAY[5.4,3.4,1.7,0.2],'Iris-setosa', 1.0), (22,ARRAY[5.1,3.7,1.5,0.4],'Iris-setosa', 1.0), (23,ARRAY[4.6,3.6,1.0,0.2],'Iris-setosa', 1.0), (24,ARRAY[5.1,3.3,1.7,0.5],'Iris-setosa', 1.0), (25,ARRAY[4.8,3.4,1.9,0.2],'Iris-setosa', 1.0), (26,ARRAY[5.0,3.0,1.6,0.2],'Iris-setosa', 1.0), (27,ARRAY[5.0,3.4,1.6,0.4],'Iris-setosa', 1.0), (28,ARRAY[5.2,3.5,1.5,0.2],'Iris-setosa', 1.0), (29,ARRAY[5.2,3.4,1.4,0.2],'Iris-setosa', 1.0), (30,ARRAY[4.7,3.2,1.6,0.2],'Iris-setosa', 1.0), (31,ARRAY[4.8,3.1,1.6,0.2],'Iris-setosa', 1.0), (32,ARRAY[5.4,3.4,1.5,0.4],'Iris-setosa', 1.0), (33,ARRAY[5.2,4.1,1.5,0.1],'Iris-setosa', 1.0), (34,ARRAY[5.5,4.2,1.4,0.2],'Iris-setosa', 1.0), (35,ARRAY[4.9,3.1,1.5,0.1],'Iris-setosa', 1.0), (36,ARRAY[5.0,3.2,1.2,0.2],'Iris-setosa', 1.0), (37,ARRAY[5.5,3.5,1.3,0.2],'Iris-setosa', 1.0), (38,ARRAY[4.9,3.1,1.5,0.1],'Iris-setosa', 1.0), (39,ARRAY[4.4,3.0,1.3,0.2],'Iris-setosa', 1.0), (40,ARRAY[5.1,3.4,1.5,0.2],'Iris-setosa', 1.0), (41,ARRAY[5.0,3.5,1.3,0.3],'Iris-setosa', 1.0), (42,ARRAY[4.5,2.3,1.3,0.3],'Iris-setosa', 1.0), (43,ARRAY[4.4,3.2,1.3,0.2],'Iris-setosa', 1.0), (44,ARRAY[5.0,3.5,1.6,0.6],'Iris-setosa', 1.0), (45,ARRAY[5.1,3.8,1.9,0.4],'Iris-setosa', 1.0), (46,ARRAY[4.8,3.0,1.4,0.3],'Iris-setosa', 1.0), (47,ARRAY[5.1,3.8,1.6,0.2],'Iris-setosa', 1.0), (48,ARRAY[4.6,3.2,1.4,0.2],'Iris-setosa', 1.0), (49,ARRAY[5.3,3.7,1.5,0.2],'Iris-setosa', 1.0), (50,ARRAY[5.0,3.3,1.4,0.2],'Iris-setosa', 1.0), (51,ARRAY[7.0,3.2,4.7,1.4],'Iris-versicolor', 1.0), (52,ARRAY[6.4,3.2,4.5,1.5],'Iris-versicolor', 1.0), (53,ARRAY[6.9,3.1,4.9,1.5],'Iris-versicolor', 1.0), (54,ARRAY[5.5,2.3,4.0,1.3],'Iris-versicolor', 1.0), (55,ARRAY[6.5,2.8,4.6,1.5],'Iris-versicolor', 1.0), (56,ARRAY[5.7,2.8,4.5,1.3],'Iris-versicolor', 1.0), (57,ARRAY[6.3,3.3,4.7,1.6],'Iris-versicolor', 1.0), (58,ARRAY[4.9,2.4,3.3,1.0],'Iris-versicolor', 1.0), (59,ARRAY[6.6,2.9,4.6,1.3],'Iris-versicolor', 1.0), (60,ARRAY[5.2,2.7,3.9,1.4],'Iris-versicolor', 1.0), (61,ARRAY[5.0,2.0,3.5,1.0],'Iris-versicolor', 1.0), (62,ARRAY[5.9,3.0,4.2,1.5],'Iris-versicolor', 1.0), (63,ARRAY[6.0,2.2,4.0,1.0],'Iris-versicolor', 1.0), (64,ARRAY[6.1,2.9,4.7,1.4],'Iris-versicolor', 1.0), (65,ARRAY[5.6,2.9,3.6,1.3],'Iris-versicolor', 1.0), (66,ARRAY[6.7,3.1,4.4,1.4],'Iris-versicolor', 1.0), (67,ARRAY[5.6,3.0,4.5,1.5],'Iris-versicolor', 1.0), (68,ARRAY[5.8,2.7,4.1,1.0],'Iris-versicolor', 1.0), (69,ARRAY[6.2,2.2,4.5,1.5],'Iris-versicolor', 1.0), (70,ARRAY[5.6,2.5,3.9,1.1],'Iris-versicolor', 1.0), (71,ARRAY[5.9,3.2,4.8,1.8],'Iris-versicolor', 1.0), (72,ARRAY[6.1,2.8,4.0,1.3],'Iris-versicolor', 1.0), (73,ARRAY[6.3,2.5,4.9,1.5],'Iris-versicolor', 1.0), (74,ARRAY[6.1,2.8,4.7,1.2],'Iris-versicolor', 1.0), (75,ARRAY[6.4,2.9,4.3,1.3],'Iris-versicolor', 1.0), (76,ARRAY[6.6,3.0,4.4,1.4],'Iris-versicolor', 1.0), (77,ARRAY[6.8,2.8,4.8,1.4],'Iris-versicolor', 1.0), (78,ARRAY[6.7,3.0,5.0,1.7],'Iris-versicolor', 1.0), (79,ARRAY[6.0,2.9,4.5,1.5],'Iris-versicolor', 1.0), (80,ARRAY[5.7,2.6,3.5,1.0],'Iris-versicolor', 1.0), (81,ARRAY[5.5,2.4,3.8,1.1],'Iris-versicolor', 1.0), (82,ARRAY[5.5,2.4,3.7,1.0],'Iris-versicolor', 1.0), (83,ARRAY[5.8,2.7,3.9,1.2],'Iris-versicolor', 1.0), (84,ARRAY[6.0,2.7,5.1,1.6],'Iris-versicolor', 1.0), (85,ARRAY[5.4,3.0,4.5,1.5],'Iris-versicolor', 1.0), (86,ARRAY[6.0,3.4,4.5,1.6],'Iris-versicolor', 1.0), (87,ARRAY[6.7,3.1,4.7,1.5],'Iris-versicolor', 1.0), (88,ARRAY[6.3,2.3,4.4,1.3],'Iris-versicolor', 1.0), (89,ARRAY[5.6,3.0,4.1,1.3],'Iris-versicolor', 1.0), (90,ARRAY[5.5,2.5,4.0,1.3],'Iris-versicolor', 1.0), (91,ARRAY[5.5,2.6,4.4,1.2],'Iris-versicolor', 1.0), (92,ARRAY[6.1,3.0,4.6,1.4],'Iris-versicolor', 1.0), (93,ARRAY[5.8,2.6,4.0,1.2],'Iris-versicolor', 1.0), (94,ARRAY[5.0,2.3,3.3,1.0],'Iris-versicolor', 1.0), (95,ARRAY[5.6,2.7,4.2,1.3],'Iris-versicolor', 1.0), (96,ARRAY[5.7,3.0,4.2,1.2],'Iris-versicolor', 1.0), (97,ARRAY[5.7,2.9,4.2,1.3],'Iris-versicolor', 1.0), (98,ARRAY[6.2,2.9,4.3,1.3],'Iris-versicolor', 1.0), (99,ARRAY[5.1,2.5,3.0,1.1],'Iris-versicolor', 1.0), (100,ARRAY[5.7,2.8,4.1,1.3],'Iris-versicolor', 1.0), (101,ARRAY[6.3,3.3,6.0,2.5],'Iris-virginica', 1.0), (102,ARRAY[5.8,2.7,5.1,1.9],'Iris-virginica', 1.0), (103,ARRAY[7.1,3.0,5.9,2.1],'Iris-virginica', 1.0), (104,ARRAY[6.3,2.9,5.6,1.8],'Iris-virginica', 1.0), (105,ARRAY[6.5,3.0,5.8,2.2],'Iris-virginica', 1.0), (106,ARRAY[7.6,3.0,6.6,2.1],'Iris-virginica', 1.0), (107,ARRAY[4.9,2.5,4.5,1.7],'Iris-virginica', 1.0), (108,ARRAY[7.3,2.9,6.3,1.8],'Iris-virginica', 1.0), (109,ARRAY[6.7,2.5,5.8,1.8],'Iris-virginica', 1.0), (110,ARRAY[7.2,3.6,6.1,2.5],'Iris-virginica', 1.0), (111,ARRAY[6.5,3.2,5.1,2.0],'Iris-virginica', 1.0), (112,ARRAY[6.4,2.7,5.3,1.9],'Iris-virginica', 1.0), (113,ARRAY[6.8,3.0,5.5,2.1],'Iris-virginica', 1.0), (114,ARRAY[5.7,2.5,5.0,2.0],'Iris-virginica', 1.0), (115,ARRAY[5.8,2.8,5.1,2.4],'Iris-virginica', 1.0), (116,ARRAY[6.4,3.2,5.3,2.3],'Iris-virginica', 1.0), (117,ARRAY[6.5,3.0,5.5,1.8],'Iris-virginica', 1.0), (118,ARRAY[7.7,3.8,6.7,2.2],'Iris-virginica', 1.0), (119,ARRAY[7.7,2.6,6.9,2.3],'Iris-virginica', 1.0), (120,ARRAY[6.0,2.2,5.0,1.5],'Iris-virginica', 1.0), (121,ARRAY[6.9,3.2,5.7,2.3],'Iris-virginica', 1.0), (122,ARRAY[5.6,2.8,4.9,2.0],'Iris-virginica', 1.0), (123,ARRAY[7.7,2.8,6.7,2.0],'Iris-virginica', 1.0), (124,ARRAY[6.3,2.7,4.9,1.8],'Iris-virginica', 1.0), (125,ARRAY[6.7,3.3,5.7,2.1],'Iris-virginica', 1.0), (126,ARRAY[7.2,3.2,6.0,1.8],'Iris-virginica', 1.0), (127,ARRAY[6.2,2.8,4.8,1.8],'Iris-virginica', 1.0), (128,ARRAY[6.1,3.0,4.9,1.8],'Iris-virginica', 1.0), (129,ARRAY[6.4,2.8,5.6,2.1],'Iris-virginica', 1.0), (130,ARRAY[7.2,3.0,5.8,1.6],'Iris-virginica', 1.0), (131,ARRAY[7.4,2.8,6.1,1.9],'Iris-virginica', 1.0), (132,ARRAY[7.9,3.8,6.4,2.0],'Iris-virginica', 1.0), (133,ARRAY[6.4,2.8,5.6,2.2],'Iris-virginica', 1.0), (134,ARRAY[6.3,2.8,5.1,1.5],'Iris-virginica', 1.0), (135,ARRAY[6.1,2.6,5.6,1.4],'Iris-virginica', 1.0), (136,ARRAY[7.7,3.0,6.1,2.3],'Iris-virginica', 1.0), (137,ARRAY[6.3,3.4,5.6,2.4],'Iris-virginica', 1.0), (138,ARRAY[6.4,3.1,5.5,1.8],'Iris-virginica', 1.0), (139,ARRAY[6.0,3.0,4.8,1.8],'Iris-virginica', 1.0), (140,ARRAY[6.9,3.1,5.4,2.1],'Iris-virginica', 1.0), (141,ARRAY[6.7,3.1,5.6,2.4],'Iris-virginica', 1.0), (142,ARRAY[6.9,3.1,5.1,2.3],'Iris-virginica', 1.0), (143,ARRAY[5.8,2.7,5.1,1.9],'Iris-virginica', 1.0), (144,ARRAY[6.8,3.2,5.9,2.3],'Iris-virginica', 1.0), (145,ARRAY[6.7,3.3,5.7,2.5],'Iris-virginica', 1.0), (146,ARRAY[6.7,3.0,5.2,2.3],'Iris-virginica', 1.0), (147,ARRAY[6.3,2.5,5.0,1.9],'Iris-virginica', 1.0), (148,ARRAY[6.5,3.0,5.2,2.0],'Iris-virginica', 1.0), (149,ARRAY[6.2,3.4,5.4,2.3],'Iris-virginica', 1.0), (150,ARRAY[5.9,3.0,5.1,1.8],'Iris-virginica', 1.0); DROP TABLE IF EXISTS mlp_model, mlp_model_summary, mlp_model_standardization; -- Set seed so results are reproducible SELECT setseed(0); SELECT madlib.mlp_classification( 'temp1', -- Source table 'mlp_model', -- Destination table 'attributes', -- Input features 'class_text', -- Label ARRAY[5], -- Number of units per layer 'learning_rate_init=0.003, n_iterations=500, tolerance=0', -- Optimizer params 'tanh', -- Activation function 'row_weight', -- Weight FALSE, -- No warm start FALSE -- Not verbose ); {code} produces {code} ERROR: plpy.Error: MLP error: Weights should be a numeric type CONTEXT: Traceback (most recent call last): PL/Python function "mlp_classification", line 33, in <module> grouping_col) PL/Python function "mlp_classification", line 42, in wrapper PL/Python function "mlp_classification", line 116, in mlp PL/Python function "mlp_classification", line 740, in _validate_params_based_on_minibatch PL/Python function "mlp_classification", line 123, in _assert PL/Python function "mlp_classification" {code} Also: {code} DROP TABLE IF EXISTS temp1; CREATE TABLE temp1( id serial, attributes numeric[], class_text varchar, row_weight double precision ); INSERT INTO temp1(id, attributes, class_text, row_weight) VALUES (1,ARRAY[5.1,3.5,1.4,0.2],'Iris-setosa', 1.0), (2,ARRAY[4.9,3.0,1.4,0.2],'Iris-setosa', 1.0), (3,ARRAY[4.7,3.2,1.3,0.2],'Iris-setosa', 1.0), (4,ARRAY[4.6,3.1,1.5,0.2],'Iris-setosa', 1.0), (5,ARRAY[5.0,3.6,1.4,0.2],'Iris-setosa', 1.0), (6,ARRAY[5.4,3.9,1.7,0.4],'Iris-setosa', 1.0), (7,ARRAY[4.6,3.4,1.4,0.3],'Iris-setosa', 1.0), (8,ARRAY[5.0,3.4,1.5,0.2],'Iris-setosa', 1.0), (9,ARRAY[4.4,2.9,1.4,0.2],'Iris-setosa', 1.0), (10,ARRAY[4.9,3.1,1.5,0.1],'Iris-setosa', 1.0), (11,ARRAY[5.4,3.7,1.5,0.2],'Iris-setosa', 1.0), (12,ARRAY[4.8,3.4,1.6,0.2],'Iris-setosa', 1.0), (13,ARRAY[4.8,3.0,1.4,0.1],'Iris-setosa', 1.0), (14,ARRAY[4.3,3.0,1.1,0.1],'Iris-setosa', 1.0), (15,ARRAY[5.8,4.0,1.2,0.2],'Iris-setosa', 1.0), (16,ARRAY[5.7,4.4,1.5,0.4],'Iris-setosa', 1.0), (17,ARRAY[5.4,3.9,1.3,0.4],'Iris-setosa', 1.0), (18,ARRAY[5.1,3.5,1.4,0.3],'Iris-setosa', 1.0), (19,ARRAY[5.7,3.8,1.7,0.3],'Iris-setosa', 1.0), (20,ARRAY[5.1,3.8,1.5,0.3],'Iris-setosa', 1.0), (21,ARRAY[5.4,3.4,1.7,0.2],'Iris-setosa', 1.0), (22,ARRAY[5.1,3.7,1.5,0.4],'Iris-setosa', 1.0), (23,ARRAY[4.6,3.6,1.0,0.2],'Iris-setosa', 1.0), (24,ARRAY[5.1,3.3,1.7,0.5],'Iris-setosa', 1.0), (25,ARRAY[4.8,3.4,1.9,0.2],'Iris-setosa', 1.0), (26,ARRAY[5.0,3.0,1.6,0.2],'Iris-setosa', 1.0), (27,ARRAY[5.0,3.4,1.6,0.4],'Iris-setosa', 1.0), (28,ARRAY[5.2,3.5,1.5,0.2],'Iris-setosa', 1.0), (29,ARRAY[5.2,3.4,1.4,0.2],'Iris-setosa', 1.0), (30,ARRAY[4.7,3.2,1.6,0.2],'Iris-setosa', 1.0), (31,ARRAY[4.8,3.1,1.6,0.2],'Iris-setosa', 1.0), (32,ARRAY[5.4,3.4,1.5,0.4],'Iris-setosa', 1.0), (33,ARRAY[5.2,4.1,1.5,0.1],'Iris-setosa', 1.0), (34,ARRAY[5.5,4.2,1.4,0.2],'Iris-setosa', 1.0), (35,ARRAY[4.9,3.1,1.5,0.1],'Iris-setosa', 1.0), (36,ARRAY[5.0,3.2,1.2,0.2],'Iris-setosa', 1.0), (37,ARRAY[5.5,3.5,1.3,0.2],'Iris-setosa', 1.0), (38,ARRAY[4.9,3.1,1.5,0.1],'Iris-setosa', 1.0), (39,ARRAY[4.4,3.0,1.3,0.2],'Iris-setosa', 1.0), (40,ARRAY[5.1,3.4,1.5,0.2],'Iris-setosa', 1.0), (41,ARRAY[5.0,3.5,1.3,0.3],'Iris-setosa', 1.0), (42,ARRAY[4.5,2.3,1.3,0.3],'Iris-setosa', 1.0), (43,ARRAY[4.4,3.2,1.3,0.2],'Iris-setosa', 1.0), (44,ARRAY[5.0,3.5,1.6,0.6],'Iris-setosa', 1.0), (45,ARRAY[5.1,3.8,1.9,0.4],'Iris-setosa', 1.0), (46,ARRAY[4.8,3.0,1.4,0.3],'Iris-setosa', 1.0), (47,ARRAY[5.1,3.8,1.6,0.2],'Iris-setosa', 1.0), (48,ARRAY[4.6,3.2,1.4,0.2],'Iris-setosa', 1.0), (49,ARRAY[5.3,3.7,1.5,0.2],'Iris-setosa', 1.0), (50,ARRAY[5.0,3.3,1.4,0.2],'Iris-setosa', 1.0), (51,ARRAY[7.0,3.2,4.7,1.4],'Iris-versicolor', 1.0), (52,ARRAY[6.4,3.2,4.5,1.5],'Iris-versicolor', 1.0), (53,ARRAY[6.9,3.1,4.9,1.5],'Iris-versicolor', 1.0), (54,ARRAY[5.5,2.3,4.0,1.3],'Iris-versicolor', 1.0), (55,ARRAY[6.5,2.8,4.6,1.5],'Iris-versicolor', 1.0), (56,ARRAY[5.7,2.8,4.5,1.3],'Iris-versicolor', 1.0), (57,ARRAY[6.3,3.3,4.7,1.6],'Iris-versicolor', 1.0), (58,ARRAY[4.9,2.4,3.3,1.0],'Iris-versicolor', 1.0), (59,ARRAY[6.6,2.9,4.6,1.3],'Iris-versicolor', 1.0), (60,ARRAY[5.2,2.7,3.9,1.4],'Iris-versicolor', 1.0), (61,ARRAY[5.0,2.0,3.5,1.0],'Iris-versicolor', 1.0), (62,ARRAY[5.9,3.0,4.2,1.5],'Iris-versicolor', 1.0), (63,ARRAY[6.0,2.2,4.0,1.0],'Iris-versicolor', 1.0), (64,ARRAY[6.1,2.9,4.7,1.4],'Iris-versicolor', 1.0), (65,ARRAY[5.6,2.9,3.6,1.3],'Iris-versicolor', 1.0), (66,ARRAY[6.7,3.1,4.4,1.4],'Iris-versicolor', 1.0), (67,ARRAY[5.6,3.0,4.5,1.5],'Iris-versicolor', 1.0), (68,ARRAY[5.8,2.7,4.1,1.0],'Iris-versicolor', 1.0), (69,ARRAY[6.2,2.2,4.5,1.5],'Iris-versicolor', 1.0), (70,ARRAY[5.6,2.5,3.9,1.1],'Iris-versicolor', 1.0), (71,ARRAY[5.9,3.2,4.8,1.8],'Iris-versicolor', 1.0), (72,ARRAY[6.1,2.8,4.0,1.3],'Iris-versicolor', 1.0), (73,ARRAY[6.3,2.5,4.9,1.5],'Iris-versicolor', 1.0), (74,ARRAY[6.1,2.8,4.7,1.2],'Iris-versicolor', 1.0), (75,ARRAY[6.4,2.9,4.3,1.3],'Iris-versicolor', 1.0), (76,ARRAY[6.6,3.0,4.4,1.4],'Iris-versicolor', 1.0), (77,ARRAY[6.8,2.8,4.8,1.4],'Iris-versicolor', 1.0), (78,ARRAY[6.7,3.0,5.0,1.7],'Iris-versicolor', 1.0), (79,ARRAY[6.0,2.9,4.5,1.5],'Iris-versicolor', 1.0), (80,ARRAY[5.7,2.6,3.5,1.0],'Iris-versicolor', 1.0), (81,ARRAY[5.5,2.4,3.8,1.1],'Iris-versicolor', 1.0), (82,ARRAY[5.5,2.4,3.7,1.0],'Iris-versicolor', 1.0), (83,ARRAY[5.8,2.7,3.9,1.2],'Iris-versicolor', 1.0), (84,ARRAY[6.0,2.7,5.1,1.6],'Iris-versicolor', 1.0), (85,ARRAY[5.4,3.0,4.5,1.5],'Iris-versicolor', 1.0), (86,ARRAY[6.0,3.4,4.5,1.6],'Iris-versicolor', 1.0), (87,ARRAY[6.7,3.1,4.7,1.5],'Iris-versicolor', 1.0), (88,ARRAY[6.3,2.3,4.4,1.3],'Iris-versicolor', 1.0), (89,ARRAY[5.6,3.0,4.1,1.3],'Iris-versicolor', 1.0), (90,ARRAY[5.5,2.5,4.0,1.3],'Iris-versicolor', 1.0), (91,ARRAY[5.5,2.6,4.4,1.2],'Iris-versicolor', 1.0), (92,ARRAY[6.1,3.0,4.6,1.4],'Iris-versicolor', 1.0), (93,ARRAY[5.8,2.6,4.0,1.2],'Iris-versicolor', 1.0), (94,ARRAY[5.0,2.3,3.3,1.0],'Iris-versicolor', 1.0), (95,ARRAY[5.6,2.7,4.2,1.3],'Iris-versicolor', 1.0), (96,ARRAY[5.7,3.0,4.2,1.2],'Iris-versicolor', 1.0), (97,ARRAY[5.7,2.9,4.2,1.3],'Iris-versicolor', 1.0), (98,ARRAY[6.2,2.9,4.3,1.3],'Iris-versicolor', 1.0), (99,ARRAY[5.1,2.5,3.0,1.1],'Iris-versicolor', 1.0), (100,ARRAY[5.7,2.8,4.1,1.3],'Iris-versicolor', 1.0), (101,ARRAY[6.3,3.3,6.0,2.5],'Iris-virginica', 1.0), (102,ARRAY[5.8,2.7,5.1,1.9],'Iris-virginica', 1.0), (103,ARRAY[7.1,3.0,5.9,2.1],'Iris-virginica', 1.0), (104,ARRAY[6.3,2.9,5.6,1.8],'Iris-virginica', 1.0), (105,ARRAY[6.5,3.0,5.8,2.2],'Iris-virginica', 1.0), (106,ARRAY[7.6,3.0,6.6,2.1],'Iris-virginica', 1.0), (107,ARRAY[4.9,2.5,4.5,1.7],'Iris-virginica', 1.0), (108,ARRAY[7.3,2.9,6.3,1.8],'Iris-virginica', 1.0), (109,ARRAY[6.7,2.5,5.8,1.8],'Iris-virginica', 1.0), (110,ARRAY[7.2,3.6,6.1,2.5],'Iris-virginica', 1.0), (111,ARRAY[6.5,3.2,5.1,2.0],'Iris-virginica', 1.0), (112,ARRAY[6.4,2.7,5.3,1.9],'Iris-virginica', 1.0), (113,ARRAY[6.8,3.0,5.5,2.1],'Iris-virginica', 1.0), (114,ARRAY[5.7,2.5,5.0,2.0],'Iris-virginica', 1.0), (115,ARRAY[5.8,2.8,5.1,2.4],'Iris-virginica', 1.0), (116,ARRAY[6.4,3.2,5.3,2.3],'Iris-virginica', 1.0), (117,ARRAY[6.5,3.0,5.5,1.8],'Iris-virginica', 1.0), (118,ARRAY[7.7,3.8,6.7,2.2],'Iris-virginica', 1.0), (119,ARRAY[7.7,2.6,6.9,2.3],'Iris-virginica', 1.0), (120,ARRAY[6.0,2.2,5.0,1.5],'Iris-virginica', 1.0), (121,ARRAY[6.9,3.2,5.7,2.3],'Iris-virginica', 1.0), (122,ARRAY[5.6,2.8,4.9,2.0],'Iris-virginica', 1.0), (123,ARRAY[7.7,2.8,6.7,2.0],'Iris-virginica', 1.0), (124,ARRAY[6.3,2.7,4.9,1.8],'Iris-virginica', 1.0), (125,ARRAY[6.7,3.3,5.7,2.1],'Iris-virginica', 1.0), (126,ARRAY[7.2,3.2,6.0,1.8],'Iris-virginica', 1.0), (127,ARRAY[6.2,2.8,4.8,1.8],'Iris-virginica', 1.0), (128,ARRAY[6.1,3.0,4.9,1.8],'Iris-virginica', 1.0), (129,ARRAY[6.4,2.8,5.6,2.1],'Iris-virginica', 1.0), (130,ARRAY[7.2,3.0,5.8,1.6],'Iris-virginica', 1.0), (131,ARRAY[7.4,2.8,6.1,1.9],'Iris-virginica', 1.0), (132,ARRAY[7.9,3.8,6.4,2.0],'Iris-virginica', 1.0), (133,ARRAY[6.4,2.8,5.6,2.2],'Iris-virginica', 1.0), (134,ARRAY[6.3,2.8,5.1,1.5],'Iris-virginica', 1.0), (135,ARRAY[6.1,2.6,5.6,1.4],'Iris-virginica', 1.0), (136,ARRAY[7.7,3.0,6.1,2.3],'Iris-virginica', 1.0), (137,ARRAY[6.3,3.4,5.6,2.4],'Iris-virginica', 1.0), (138,ARRAY[6.4,3.1,5.5,1.8],'Iris-virginica', 1.0), (139,ARRAY[6.0,3.0,4.8,1.8],'Iris-virginica', 1.0), (140,ARRAY[6.9,3.1,5.4,2.1],'Iris-virginica', 1.0), (141,ARRAY[6.7,3.1,5.6,2.4],'Iris-virginica', 1.0), (142,ARRAY[6.9,3.1,5.1,2.3],'Iris-virginica', 1.0), (143,ARRAY[5.8,2.7,5.1,1.9],'Iris-virginica', 1.0), (144,ARRAY[6.8,3.2,5.9,2.3],'Iris-virginica', 1.0), (145,ARRAY[6.7,3.3,5.7,2.5],'Iris-virginica', 1.0), (146,ARRAY[6.7,3.0,5.2,2.3],'Iris-virginica', 1.0), (147,ARRAY[6.3,2.5,5.0,1.9],'Iris-virginica', 1.0), (148,ARRAY[6.5,3.0,5.2,2.0],'Iris-virginica', 1.0), (149,ARRAY[6.2,3.4,5.4,2.3],'Iris-virginica', 1.0), (150,ARRAY[5.9,3.0,5.1,1.8],'Iris-virginica', 1.0); DROP TABLE IF EXISTS mlp_model, mlp_model_summary, mlp_model_standardization; -- Set seed so results are reproducible SELECT setseed(0); SELECT madlib.mlp_classification( 'temp1', -- Source table 'mlp_model', -- Destination table 'attributes', -- Input features 'class_text', -- Label ARRAY[5], -- Number of units per layer 'learning_rate_init=0.003, n_iterations=500, tolerance=0', -- Optimizer params 'tanh', -- Activation function 'row_weight', -- Weight FALSE, -- No warm start FALSE -- Not verbose ); {code} ERROR: spiexceptions.UndefinedColumn: column "row_weight" does not exist LINE 15: (row_weight)::DOUBLE PRECISION, ^ QUERY: SELECT array_to_string(ARRAY[Null], ',') AS __madlib_temp_col_grp_key37112385_1614190822_33660952__, NULL, 1 AS __madlib_temp_col_grp_iteration8055158_1614190822_5448717__, ( madlib.mlp_igd_step( (__madlib_temp_ind_var_norm9652667_1614190822_1337450__)::DOUBLE PRECISION[], (ARRAY[(__madlib_temp_dep_var_norm15181682_1614190822_42979282__) = 'Iris-setosa', (__madlib_temp_dep_var_norm15181682_1614190822_42979282__) = 'Iris-versicolor', (__madlib_temp_dep_var_norm15181682_1614190822_42979282__) = 'Iris-virginica']::INTEGER[])::DOUBLE PRECISION[], __madlib_temp_rel_state63146625_1614190822_28739242__.__madlib_temp_col_grp_state22029204_1614190822_47058640__, ARRAY[ 4,5,3 ]::DOUBLE PRECISION[], (0.003)::FLOAT8, 2, 1, (row_weight)::DOUBLE PRECISION, (NULL::DOUBLE PRECISION[])::DOUBLE PRECISION[], 0, 0.9::FLOAT8, True::boolean ) ) AS __madlib_temp_col_grp_state22029204_1614190822_47058640__ FROM ( SELECT *, array_to_string(ARRAY[Null], ',') AS __madlib_temp_col_grp_key37112385_1614190822_33660952__ FROM __madlib_temp_tbl_data_scaled79575459_1614190822_3285917__ ) AS _src JOIN ( SELECT grp_key AS __madlib_temp_col_grp_key37112385_1614190822_33660952__,state AS __madlib_temp_col_grp_state22029204_1614190822_47058640__ FROM madlib._gen_state($1, NULL, $2) ) AS __madlib_temp_rel_state63146625_1614190822_28739242__ ON TRUE JOIN ( SELECT unnest($3) AS __madlib_temp_col_grp_key37112385_1614190822_33660952__, unnest($4) AS __madlib_temp_col_n_tuples70500775_1614190822_4678022__ ) AS _rel_n_tuples ON TRUE CONTEXT: Traceback (most recent call last): PL/Python function "mlp_classification", line 33, in <module> grouping_col) PL/Python function "mlp_classification", line 42, in wrapper PL/Python function "mlp_classification", line 334, in mlp PL/Python function "mlp_classification", line 576, in update PL/Python function "mlp_classification" {code} {code} -- This message was sent by Atlassian Jira (v8.3.4#803005)