Frank McQuillan created MADLIB-1018:
---------------------------------------
Summary: Fix K-means support for array input for data points
Key: MADLIB-1018
URL: https://issues.apache.org/jira/browse/MADLIB-1018
Project: Apache MADlib
Issue Type: Bug
Components: Module: k-Means Clustering
Reporter: Frank McQuillan
Fix For: v1.9.2
For k-means, normally you should be able to do array[col1, col2…] for the 2nd
parameter, but that does not work. This JIRA is to be able to support
array[col1, col2…].
{code}
expr_point
TEXT. The name of the column with point coordinates.
{code}
{code}
SELECT madlib.kmeans_random('customers_train',
'array[creditamount, accountbalance]',
3
);
{code}
produces
{code}
---------------------------------------------------------------------------
InternalError Traceback (most recent call last)
<ipython-input-50-0b939dd162ef> in <module>()
----> 1 get_ipython().run_cell_magic(u'sql', u'', u"\nSELECT
madlib.kmeans_random('customers_train',\n 'array[creditamount,
accountbalance]',\n 3\n );\n")
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/IPython/core/interactiveshell.pyc
in run_cell_magic(self, magic_name, line, cell)
2291 magic_arg_s = self.var_expand(line, stack_depth)
2292 with self.builtin_trap:
-> 2293 result = fn(magic_arg_s, cell)
2294 return result
2295
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sql/magic.pyc in
execute(self, line, cell, local_ns)
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/IPython/core/magic.pyc
in <lambda>(f, *a, **k)
191 # but it's overkill for just that one bit of state.
192 def magic_deco(arg):
--> 193 call = lambda f, *a, **k: f(*a, **k)
194
195 if callable(arg):
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sql/magic.pyc in
execute(self, line, cell, local_ns)
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/IPython/core/magic.pyc
in <lambda>(f, *a, **k)
191 # but it's overkill for just that one bit of state.
192 def magic_deco(arg):
--> 193 call = lambda f, *a, **k: f(*a, **k)
194
195 if callable(arg):
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sql/magic.pyc in
execute(self, line, cell, local_ns)
78 return self._persist_dataframe(parsed['sql'], conn, user_ns)
79 try:
---> 80 result = sql.run.run(conn, parsed['sql'], self, user_ns)
81 return result
82 except (ProgrammingError, OperationalError) as e:
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sql/run.pyc in run(conn,
sql, config, user_namespace)
270 raise Exception("ipython_sql does not support
transactions")
271 txt = sqlalchemy.sql.text(statement)
--> 272 result = conn.session.execute(txt, user_namespace)
273 try:
274 conn.session.execute('commit')
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sqlalchemy/engine/base.pyc
in execute(self, object, *multiparams, **params)
912 type(object))
913 else:
--> 914 return meth(self, multiparams, params)
915
916 def _execute_function(self, func, multiparams, params):
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sqlalchemy/sql/elements.pyc
in _execute_on_connection(self, connection, multiparams, params)
321
322 def _execute_on_connection(self, connection, multiparams, params):
--> 323 return connection._execute_clauseelement(self, multiparams,
params)
324
325 def unique_params(self, *optionaldict, **kwargs):
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sqlalchemy/engine/base.pyc
in _execute_clauseelement(self, elem, multiparams, params)
1008 compiled_sql,
1009 distilled_params,
-> 1010 compiled_sql, distilled_params
1011 )
1012 if self._has_events or self.engine._has_events:
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sqlalchemy/engine/base.pyc
in _execute_context(self, dialect, constructor, statement, parameters, *args)
1144 parameters,
1145 cursor,
-> 1146 context)
1147
1148 if self._has_events or self.engine._has_events:
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sqlalchemy/engine/base.pyc
in _handle_dbapi_exception(self, e, statement, parameters, cursor, context)
1339 util.raise_from_cause(
1340 sqlalchemy_exception,
-> 1341 exc_info
1342 )
1343 else:
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sqlalchemy/util/compat.pyc
in raise_from_cause(exception, exc_info)
197 exc_info = sys.exc_info()
198 exc_type, exc_value, exc_tb = exc_info
--> 199 reraise(type(exception), exception, tb=exc_tb)
200
201 if py3k:
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sqlalchemy/engine/base.pyc
in _execute_context(self, dialect, constructor, statement, parameters, *args)
1137 statement,
1138 parameters,
-> 1139 context)
1140 except Exception as e:
1141 self._handle_dbapi_exception(
/Users/fmcquillan/anaconda/lib/python2.7/site-packages/sqlalchemy/engine/default.pyc
in do_execute(self, cursor, statement, parameters, context)
448
449 def do_execute(self, cursor, statement, parameters, context=None):
--> 450 cursor.execute(statement, parameters)
451
452 def do_execute_no_params(self, cursor, statement, context=None):
InternalError: (psycopg2.InternalError) plpy.SPIError: syntax error at or near
"," (plpython.c:4651)
LINE 44: ... _src.array[creditamount, accountb...
^
QUERY:
SELECT
1 AS _iteration,
madlib.array_to_1d((_state).centroids) AS centroids,
(_state).old_centroid_ids,
(_state).objective_fn,
(_state).frac_reassigned
FROM
(
SELECT (
SELECT
CAST((
madlib.matrix_agg(
_centroid::FLOAT8[]
ORDER BY _new_centroid_id),
array_agg(_new_centroid_id ORDER BY _new_centroid_id),
sum(_objective_fn),
CAST(sum(_num_reassigned) AS DOUBLE PRECISION)
/ sum(_num_points)
) AS madlib.kmeans_state)
FROM (
SELECT
(_new_centroid).column_id AS _new_centroid_id,
sum((_new_centroid).distance) AS _objective_fn,
count(*) AS _num_points,
sum(
CAST(
coalesce(
(CAST(
(SELECT (CAST ((madlib.array_to_2d($1),
$2, $3, $4)
AS madlib.kmeans_state)).old_centroid_ids) AS
INTEGER[]
))[(_new_centroid).column_id + 1] !=
_old_centroid_id,
TRUE
)
AS INTEGER
)
) AS _num_reassigned,
madlib.avg(_point::FLOAT8[]) AS _centroid
FROM (
SELECT
-- PostgreSQL/Greenplum tuning:
-- VOLATILE function as optimization fence
madlib.noop(),
_src.array[creditamount, accountbalance] AS _point,
madlib.closest_column(
(SELECT (CAST ((madlib.array_to_2d($1), $2, $3,
$4)
AS madlib.kmeans_state)).centroids)
, _src.array[creditamount,
accountbalance]::FLOAT8[]
, 'madlib.squared_dist_norm2'
)
AS _new_centroid,
(madlib.closest_column((SELECT (CAST
((madlib.array_to_2d($5), $6, $7, $8)
AS madlib.kmeans_state)).centroids)
, _src.array[creditamount,
accountbalance]::FLOAT8[]
, 'madlib.squared_dist_norm2'
)
).column_id
AS _old_centroid_id
FROM customers_train AS _src
WHERE
abs(coalesce(madlib.svec_elsum(array[creditamount, accountbalance]),
'Infinity'::FLOAT8)) < 'Infinity'::FLOAT8
AND NOT
madlib.array_contains_null(_src.array[creditamount, accountbalance]::FLOAT8[])
) AS _points_with_assignments
GROUP BY (_new_centroid).column_id
) AS _new_centroids
) AS _state
) q
CONTEXT: Traceback (most recent call last):
PL/Python function "internal_compute_kmeans", line 22, in <module>
return kmeans.compute_kmeans(**globals())
PL/Python function "internal_compute_kmeans", line 332, in compute_kmeans
PL/Python function "internal_compute_kmeans", line 227, in update
PL/Python function "internal_compute_kmeans"
SQL statement "SELECT madlib.internal_compute_kmeans( '_madlib_kmeans_args',
'_madlib_kmeans_state', textin(regclassout( $1 )), $2 , textin(regprocout( $3
)))"
PL/pgSQL function "kmeans" line 103 at assignment
SQL statement "SELECT madlib.kmeans( $1 , $2 , madlib.kmeans_random_seeding(
$1 , $2 , $3 ), 'madlib.squared_dist_norm2', 'madlib.avg', 20, 0.001)"
PL/pgSQL function "kmeans_random" line 4 at assignment
[SQL: "SELECT madlib.kmeans_random('customers_train',\n
'array[creditamount, accountbalance]',\n 3\n );"]
{code}
The workaround is to create a view:
{code}
CREATE VIEW cluster_params AS (SELECT *, array[creditamount, accountbalance] as
p1 FROM customers_train);
SELECT madlib.kmeans_random('cluster_params',
'p1',
3
);
{code}
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)