[ 
https://issues.apache.org/jira/browse/MADLIB-1087?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16016058#comment-16016058
 ] 

Frank McQuillan commented on MADLIB-1087:
-----------------------------------------

If I run Paul's example from the description above, it does work now.

{code}
SELECT * FROM paul_badrftest2_train_summary;
{code}
produces
{code}
-[ RECORD 1 ]---------+----------------------------------------
method                | forest_train
is_classification     | t
source_table          | paul_badrftest2
model_table           | paul_badrftest2_train
id_col_name           | id
dependent_varname     | resp
independent_varnames  | feat
cat_features          | 
con_features          | feat
grouping_cols         | 
num_trees             | 1
num_random_features   | 1
max_tree_depth        | 5
min_split             | 3
min_bucket            | 3
num_splits            | 10
verbose               | f
importance            | t
num_permutations      | 1
num_all_groups        | 1
num_failed_groups     | 0
total_rows_processed  | 10
total_rows_skipped    | 0
dependent_var_levels  | "0","1","2","3","4","5","6","7","8","9"
dependent_var_type    | integer
independent_var_types | numeric
{code}





> Random Forest fails if features are INT or NUMERIC only and variable 
> importance is TRUE
> ---------------------------------------------------------------------------------------
>
>                 Key: MADLIB-1087
>                 URL: https://issues.apache.org/jira/browse/MADLIB-1087
>             Project: Apache MADlib
>          Issue Type: Bug
>          Components: Module: Random Forest
>            Reporter: Paul Chang
>            Assignee: Rahul Iyer
>            Priority: Minor
>             Fix For: v1.12
>
>
> If we attempt to train on a dataset where all features are either INT or 
> NUMERIC, and with variable importance TRUE, forest_train() fails with the 
> following error:
> [2017-04-03 13:35:35] [XX000] ERROR: plpy.SPIError: invalid array length 
> (plpython.c:4648)
> [2017-04-03 13:35:35] Detail: array_of_bigint: Size should be in [1, 1e7], 0 
> given
> [2017-04-03 13:35:35] Where: Traceback (most recent call last):
> [2017-04-03 13:35:35] PL/Python function "forest_train", line 42, in <module>
> [2017-04-03 13:35:35] sample_ratio
> [2017-04-03 13:35:35] PL/Python function "forest_train", line 591, in 
> forest_train
> [2017-04-03 13:35:35] PL/Python function "forest_train", line 1038, in 
> _calculate_oob_prediction
> [2017-04-03 13:35:35] PL/Python function "forest_train"
> However, if we add a single feature column that is FLOAT, REAL, or DOUBLE 
> PRECISION, the trainer does not fail.



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

Reply via email to