[ 
https://issues.apache.org/jira/browse/WAGON-537?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16729276#comment-16729276
 ] 

Dan Tran commented on WAGON-537:
--------------------------------

Could you deploy latest wagon snapshot to repository.apache.org?  This is much 
easier for me to build apache-maven at our Jenkins with  
-DwagonVersion=3.3.0-SNAPSHOT.



> Maven transfer speed of large artifacts is slow due to unsuitable buffer 
> strategy
> ---------------------------------------------------------------------------------
>
>                 Key: WAGON-537
>                 URL: https://issues.apache.org/jira/browse/WAGON-537
>             Project: Maven Wagon
>          Issue Type: Improvement
>          Components: wagon-http, wagon-provider-api
>    Affects Versions: 3.2.0
>         Environment: Windows 10, JDK 1.8, Nexus  Artifact store > 100MB/s 
> network connection.
>            Reporter: Olaf Otto
>            Assignee: Michael Osipov
>            Priority: Major
>              Labels: perfomance
>             Fix For: 3.3.0
>
>         Attachments: wagon-issue.png
>
>
> We are using maven for build process automation with docker. This sometimes 
> involves uploading and downloading artifacts with a few gigabytes in size. 
> Here, maven's transfer speed is consistently and reproducibly slow. For 
> instance, an artifact with 7,5 GB in size took almost two hours to transfer 
> in spite of a 100 MB/s connection with respective reproducible download speed 
> from the remote nexus artifact repository when using a browser to download. 
> The same is true when uploding such an artifact.
> I have investigated the issue using JProfiler. The result shows an issue in 
> AbstractWagon's transfer( Resource resource, InputStream input, OutputStream 
> output, int requestType, long maxSize ) method used for remote artifacts and 
> the same issue in AbstractHttpClientWagon#writeTo(OutputStream).
> Here, the input stream is read in a loop using a 4 Kb buffer. Whenever data 
> is received, the received data is pushed to downstream listeners via 
> fireTransferProgress. These listeners (or rather consumers) perform expensive 
> tasks.
> Now, the underlying InputStream implementation used in transfer will return 
> calls to read(buffer, offset, length) as soon as *some* data is available. 
> That is, fireTransferProgress may well be invoked with an average number of 
> bytes less than half the buffer capacity (this varies with the underlying 
> network and hardware architecture). Consequently, fireTransferProgress is 
> invoked *millions of times* for large files. As this is a blocking operation, 
> the time spent in fireTransferProgress dominates and drastically slows down 
> the transfers by at least one order of magnitude. 
> !wagon-issue.png! 
> In our case, we found download speed reduced from a theoretical optimum of 
> ~80 seconds to to more than 3200 seconds.
> From an architectural perspective, I would not want to make the consumers / 
> listeners invoked via fireTransferProgress aware of their potential impact on 
> download speed, but rather refactor the transfer method such that it uses a 
> buffer strategy reducing the the number of fireTransferProgress invocations. 
> This should be done with regard to the expected file size of the transfer, 
> such that fireTransferProgress is invoked often enough but not to frequent.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to