[ 
https://issues.apache.org/jira/browse/MXNET-58?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16390724#comment-16390724
 ] 

ASF GitHub Bot commented on MXNET-58:
-------------------------------------

sxjscience commented on issue #10029: [MXNET-58]Layer Normalization in C++
URL: https://github.com/apache/incubator-mxnet/pull/10029#issuecomment-371374211
 
 
   Here's the new doc of InstanceNorm 
http://mxnet-ci-doc.s3-accelerate.dualstack.amazonaws.com/PR-10029/4/api/python/gluon/nn.html#mxnet.gluon.nn.InstanceNorm
 @zhanghang1989 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


> Add LayerNorm in MXNet
> ----------------------
>
>                 Key: MXNET-58
>                 URL: https://issues.apache.org/jira/browse/MXNET-58
>             Project: Apache MXNet
>          Issue Type: New Feature
>            Reporter: Xingjian Shi
>            Priority: Major
>
> # Directly implement layer normalization in C++. The speed and memory cost 
> are both better than the way of stacking the broadcast/reduce OPs. Solves 
> [#9950|https://github.com/apache/incubator-mxnet/issues/9950]
>  # Add LayerNorm in Gluon
>  # Fix the doc of InstanceNorm. In InstanceNorm, the real axis to normalize 
> the input tensor is all axes excluding the 0th axis and the given axis.
>  # Fix the doc of BatchNorm, the inverse std instead of the var is set as the 
> output. Should fix 
> [#9216|https://github.com/apache/incubator-mxnet/issues/9216]



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@mxnet.apache.org
For additional commands, e-mail: issues-h...@mxnet.apache.org

Reply via email to