access2rohit opened a new issue #19065:
URL: https://github.com/apache/incubator-mxnet/issues/19065


   ## Description
   When run running `batch_norm` with large inputs for e.g.:
   ```
       import mxnet as mx
       from mxnet import np, npx
       A = np.ones((2, 1000000000))
       gamma = np.ones((2))
       beta = np.zeros((2))
       mov_mean = np.ones((2))
       mov_var = np.ones((2))
       A.attach_grad() 
       with mx.autograd.record():
           B = npx.batch_norm(A, gamma, beta, mov_mean, mov_var)
       print("output={}".format(B))
       B.backward()
       print("gradient={}".format(A.grad))
   ```
   
   the program errors out giving following error:
   ```
   (pytest) ubuntu@ip-172-31-0-156 ~/workspace/incubator-mxnet (mx2lts) $ 
python test_batch_norm.py
   curr_path=/home/ubuntu/workspace/incubator-mxnet
   sys_path=['/home/ubuntu/workspace/incubator-mxnet', 
'/home/ubuntu/workspace/incubator-mxnet/python', 
'/home/ubuntu/anaconda3/envs/pytest/lib/python38.zip', 
'/home/ubuntu/anaconda3/envs/pytest/lib/python3.8', 
'/home/ubuntu/anaconda3/envs/pytest/lib/python3.8/lib-dynload', 
'/home/ubuntu/anaconda3/envs/pytest/lib/python3.8/site-packages', 
'/home/ubuntu/workspace/incubator-mxnet/tests/python/unittest/']
   [15:27:26] ../src/storage/storage.cc:198: Using Pooled (Naive) 
StorageManager for CPU
   malloc_consolidate(): invalid chunk size
   Aborted (core dumped)
   ```
   
   ## To Reproduce
   Build MXNet from source and enable Large Tensor Support by turning `ON` the 
flag `USE_INT64_TENSOR_SIZE` and  run the above sample python script 
   
   ## Environment
   
   We recommend using our script for collecting the diagnositc information. Run 
the following command and paste the outputs below:
   ```
   curl --retry 10 -s 
https://raw.githubusercontent.com/apache/incubator-mxnet/master/tools/diagnose.py
 | python
   
   # paste outputs here
   (pytest) ubuntu@ip-172-31-0-156 ~/workspace/incubator-mxnet (mx2lts) $ curl 
--retry 10 -s 
https://raw.githubusercontent.com/apache/incubator-mxnet/master/tools/diagnose.py
 | python
   ----------Python Info----------
   Version      : 3.8.5
   Compiler     : GCC 7.3.0
   Build        : ('default', 'Aug  5 2020 08:36:46')
   Arch         : ('64bit', 'ELF')
   ------------Pip Info-----------
   Version      : 20.2.2
   Directory    : 
/home/ubuntu/anaconda3/envs/pytest/lib/python3.8/site-packages/pip
   ----------MXNet Info-----------
   Version      : 2.0.0
   Directory    : /home/ubuntu/workspace/incubator-mxnet/python/mxnet
   Commit hash file 
"/home/ubuntu/workspace/incubator-mxnet/python/mxnet/COMMIT_HASH" not found. 
Not installed from pre-built package or built from source.
   Library      : 
['/home/ubuntu/workspace/incubator-mxnet/python/mxnet/../../build/libmxnet.so']
   Build features:
   ✔ CUDA
   ✔ CUDNN
   ✔ NCCL
   ✖ TENSORRT
   ✔ CPU_SSE
   ✔ CPU_SSE2
   ✔ CPU_SSE3
   ✔ CPU_SSE4_1
   ✔ CPU_SSE4_2
   ✖ CPU_SSE4A
   ✔ CPU_AVX
   ✖ CPU_AVX2
   ✔ OPENMP
   ✖ SSE
   ✔ F16C
   ✖ JEMALLOC
   ✔ BLAS_OPEN
   ✖ BLAS_ATLAS
   ✖ BLAS_MKL
   ✖ BLAS_APPLE
   ✔ LAPACK
   ✔ MKLDNN
   ✔ OPENCV
   ✖ DIST_KVSTORE
   ✔ INT64_TENSOR_SIZE
   ✔ SIGNAL_HANDLER
   ✔ DEBUG
   ✖ TVM_OP
   ----------System Info----------
   Platform     : Linux-5.3.0-1032-aws-x86_64-with-glibc2.10
   system       : Linux
   node         : ip-172-31-0-156
   release      : 5.3.0-1032-aws
   version      : #34~18.04.2-Ubuntu SMP Fri Jul 24 10:06:28 UTC 2020
   ----------Hardware Info----------
   machine      : x86_64
   processor    : x86_64
   Architecture:        x86_64
   CPU op-mode(s):      32-bit, 64-bit
   Byte Order:          Little Endian
   CPU(s):              64
   On-line CPU(s) list: 0-63
   Thread(s) per core:  2
   Core(s) per socket:  16
   Socket(s):           2
   NUMA node(s):        2
   Vendor ID:           GenuineIntel
   CPU family:          6
   Model:               79
   Model name:          Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
   Stepping:            1
   CPU MHz:             2456.934
   CPU max MHz:         3000.0000
   CPU min MHz:         1200.0000
   BogoMIPS:            4600.00
   Hypervisor vendor:   Xen
   Virtualization type: full
   L1d cache:           32K
   L1i cache:           32K
   L2 cache:            256K
   L3 cache:            46080K
   NUMA node0 CPU(s):   0-15,32-47
   NUMA node1 CPU(s):   16-31,48-63
   Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge 
mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx pdpe1gb rdtscp lm 
constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf 
pni pclmulqdq monitor est ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt 
tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 
3dnowprefetch cpuid_fault invpcid_single pti fsgsbase bmi1 hle avx2 smep bmi2 
erms invpcid rtm rdseed adx xsaveopt ida
   ----------Network Test----------
   Setting timeout: 10
   Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0028 
sec, LOAD: 0.4208 sec.
   Timing for Gluon Tutorial(en): http://gluon.mxnet.io, DNS: 0.1488 sec, LOAD: 
0.2241 sec.
   Timing for Gluon Tutorial(cn): https://zh.gluon.ai, DNS: 0.2317 sec, LOAD: 
0.4453 sec.
   Timing for FashionMNIST: 
https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz,
 DNS: 0.0043 sec, LOAD: 0.1646 sec.
   Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0047 sec, LOAD: 
0.1006 sec.
   Error open Conda: https://repo.continuum.io/pkgs/free/, HTTP Error 403: 
Forbidden, DNS finished in 0.01151585578918457 sec.
   ----------Environment----------
   ```
   


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to