haohuanw opened a new issue #19150:
URL: https://github.com/apache/incubator-mxnet/issues/19150


   ## Description
   when running with built mxnet-1.7 with head of v1.7.x; if I create a model 
with even number of channels in batch norm, I got the is_view check failure 
when using mkldnn.
   
   ### Error Message
   ```
   dev-dsk-haohuw-2c-3d588fe6 % MKLDNN_VERBOSE=1 bte python minimum_repro.py    
      
   input channel of 45
   dnnl_verbose,info,oneDNN v1.6.0 (commit N/A)
   dnnl_verbose,info,cpu,runtime:sequential
   dnnl_verbose,info,cpu,isa:Intel AVX2
   dnnl_verbose,info,gpu,runtime:none
   
dnnl_verbose,exec,cpu,convolution,gemm:jit,forward_inference,src_f32::blocked:abcde:f0
 wei_f32::blocked:abcde:f0 bia_undef::undef::f0 
dst_f32::blocked:abcde:f0,,alg:convolution_direct,mb1_ic3oc45_id8od8kd1sd1dd0pd0_ih160oh80kh7sh2dh0ph3_iw160ow80kw7sw2dw0pw3,46.7029
   
dnnl_verbose,exec,cpu,batch_normalization,ncsp_bnorm:any,forward_inference,data_f32::blocked:abcd:f0
 diff_undef::undef::f0,,flags:GS,mb1ic45ih1iw51200,8.98315
   input channel of 45, (1, 45, 8, 80, 80)
   input channel of 64
   dnnl_verbose,exec,cpu,reorder,jit:uni,undef,src_f32::blocked:abcde:f0 
dst_f32::blocked:Acdeb8a:f0,,,64x3x1x7x7,0.0170898
   
dnnl_verbose,exec,cpu,convolution,jit:avx2,forward_inference,src_f32::blocked:abcde:f0
 wei_f32::blocked:Acdeb8a:f0 bia_undef::undef::f0 
dst_f32::blocked:aBcde8b:f0,,alg:convolution_direct,mb1_ic3oc64_id8od8kd1sd1dd0pd0_ih160oh80kh7sh2dh0ph3_iw160ow80kw7sw2dw0pw3,17.5981
   dnnl_verbose,exec,cpu,reorder,jit:uni,undef,src_f32::blocked:abcde:f0 
dst_f32::blocked:Acdeb8a:f0,,,64x3x1x7x7,0.0258789
   Traceback (most recent call last):
     File "minimum_repro.py", line 53, in <module>
       out = net(input_data).asnumpy()
     File 
"/home/haohuw/vision-only-workspace/c2h_mainline/env/IhmPoseStateLib-1.0/test-runtime/lib/python3.6/site-packages/mxnet/ndarray/ndarray.py",
 line 2566, in asnumpy
       ctypes.c_size_t(data.size)))
     File 
"/home/haohuw/vision-only-workspace/c2h_mainline/env/IhmPoseStateLib-1.0/test-runtime/lib/python3.6/site-packages/mxnet/base.py",
 line 246, in check_call
       raise get_last_ffi_error()
   mxnet.base.MXNetError: Traceback (most recent call last):
     File 
"/home/haohuw/vision-only-workspace/c2h_mainline/src/IhmMXNet/build/private/src/src/ndarray/ndarray.cc",
 line 650
   MXNetError: Check failed: !is_view:
   ```
   
   ## To Reproduce
   (If you developed your own code, please provide a short script that 
reproduces the error. For existing examples, please provide link.)
   
   ### Steps to reproduce
   ```
   import logging
   import os
   
   from mxnet import init
   from mxnet.context import cpu
   from mxnet.gluon import nn
   from mxnet.gluon.block import HybridBlock
   from mxnet.gluon.nn import BatchNorm
   
   import mxnet as mx
   
   class BuggyModel(HybridBlock):
   
       def __init__(
           self,
           channels,
           norm_layer=BatchNorm,
           norm_kwargs=None,
           in_channels=3,
           **kwargs
       ):
           super(BuggyModel, self).__init__(**kwargs)
           self.in_channels = in_channels
           with self.name_scope():
               self.conv1 = nn.Conv3D(
                       in_channels=self.in_channels,
                       channels=channels,
                       kernel_size=(1, 7, 7),
                       strides=(1, 2, 2),
                       padding=(0, 3, 3),
                       use_bias=False,
                       )
               self.bn1 = norm_layer(in_channels=channels, **({} if norm_kwargs 
is None else norm_kwargs))
   
       def hybrid_forward(self, F, x):
           """Hybrid forward of R2+1D net"""
           x = self.conv1(x)
           x = self.bn1(x)
           return x
   
   
   print(f"input channel of 45")
   net = BuggyModel(channels=45)
   net.initialize(init=init.Constant(1))
   input_data = mx.nd.zeros((1, 3, 8, 160, 160), ctx=mx.cpu())
   out = net(input_data).asnumpy()
   print(f"input channel of 45, {out.shape}")
   
   print(f"input channel of 64")
   net = BuggyModel(channels=64)
   net.initialize(init=init.Constant(1))
   input_data = mx.nd.zeros((1, 3, 8, 160, 160), ctx=mx.cpu())
   out = net(input_data).asnumpy()
   print(f"input channel of 64, {out.shape}")
   ```
   
   ## What have you tried to solve it?
   
   1. build with 64f737cdd59fe88d2c5b479f25d011c5156b6a8a solves the issue for 
now
   
   ## Environment
   
   We recommend using our script for collecting the diagnositc information. Run 
the following command and paste the outputs below:
   ```
   curl --retry 10 -s 
https://raw.githubusercontent.com/apache/incubator-mxnet/master/tools/diagnose.py
 | python
   
   dev-dsk-haohuw-2c-3d588fe6 % curl --retry 10 -s 
https://raw.githubusercontent.com/apache/incubator-mxnet/master/tools/diagnose.py
 | python
   ----------Python Info----------
   Version      : 3.6.11
   Compiler     : GCC 7.5.0
   Build        : ('default', 'Sep 11 2020 22:03:53')
   Arch         : ('64bit', 'ELF')
   ------------Pip Info-----------
   No corresponding pip install for current python.
   ----------MXNet Info-----------
   No MXNet installed.
   ----------System Info----------
   Platform     : 
Linux-4.9.217-0.1.ac.205.84.332.metal1.x86_64-x86_64-with-redhat-5.3-Tikanga
   system       : Linux
   node         : dev-dsk-haohuw-2c-3d588fe6.us-west-2.amazon.com
   release      : 4.9.217-0.1.ac.205.84.332.metal1.x86_64
   version      : #1 SMP Thu Apr 2 15:19:24 UTC 2020
   ----------Hardware Info----------
   machine      : x86_64
   processor    : x86_64
   Architecture:          x86_64
   CPU op-mode(s):        32-bit, 64-bit
   Byte Order:            Little Endian
   CPU(s):                8
   On-line CPU(s) list:   0-7
   Thread(s) per core:    2
   Core(s) per socket:    4
   Socket(s):             1
   NUMA node(s):          1
   Vendor ID:             GenuineIntel
   CPU family:            6
   Model:                 79
   Stepping:              1
   CPU MHz:               2699.945
   BogoMIPS:              4600.13
   Hypervisor vendor:     Xen
   Virtualization type:   full
   L1d cache:             32K
   L1i cache:             32K
   L2 cache:              256K
   L3 cache:              46080K
   NUMA node0 CPU(s):     0-7
   ----------Network Test----------
   Setting timeout: 10
   Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0018 
sec, LOAD: 0.5492 sec.
   Timing for Gluon Tutorial(en): http://gluon.mxnet.io, DNS: 0.0429 sec, LOAD: 
0.1730 sec.
   Error open Gluon Tutorial(cn): https://zh.gluon.ai, <urlopen error [SSL: 
CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:852)>, DNS 
finished in 0.34314703941345215 sec.
   Timing for FashionMNIST: 
https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz,
 DNS: 0.0204 sec, LOAD: 0.1066 sec.
   Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0234 sec, LOAD: 
0.4174 sec.
   Error open Conda: https://repo.continuum.io/pkgs/free/, HTTP Error 403: 
Forbidden, DNS finished in 0.010480880737304688 sec.
   ----------Environment----------
   
   ```
   


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to