tmyapple opened a new issue #19768: URL: https://github.com/apache/incubator-mxnet/issues/19768
## Description MaskRCNN second stage has a deconv layer - implemented as **Conv2DTranspose** (in GLUON-CV). By examination of this layer you will see that it contains a bias, but does not really use it. It is weird, because the bias is actually exist but is not really needed. So although, in the layer kwargs the default of **no_bias=False**, and the deconv layer in the mask-rcnn has the default value: ``` class mxnet.gluon.nn.Conv2D(channels, kernel_size, strides=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, layout='NCHW', activation=None, use_bias=True, weight_initializer=None, bias_initializer='zeros', in_channels=0, **kwargs)[source] ``` In inference time the bias is not used. ### Error Message No error message, the problem is with the Conv2DTranspose Operation ## To Reproduce ```python import gluoncv name = "mask_rcnn_resnet18_v1b_coco" mask_rcnn = gluoncv.model_zoo.get_model(name, pretrained=True, ctx=mx.cpu(0)) mask_rcnn.mask.deconv._kwargs ``` This will give you the deconv layer args where you will find no_bias=False Further inspection will show the existence of a bias: ```python mask_rcnn.mask.deconv.weight.data().shape ``` Now in order to see that it doesn't use the bias the fastest approach is to re-initialize the bias and examine the results. If it is the same as the original results, than the bias didn't influence at all and therefore is not used: ```python import gluoncv from gluoncv import model_zoo, data, utils rom matplotlib import pyplot as plt import mxnet as mx import numpy as np name = "mask_rcnn_resnet18_v1b_coco" mask_rcnn = gluoncv.model_zoo.get_model(name, pretrained=True, ctx=mx.cpu(0)) mask_rcnn.mask.deconv.bias.initialize(init.Constant(mx.nd.zeros(256)), force_reinit=True) x, orig_img = data.transforms.presets.rcnn.load_test("biking-600.jpg") # Replace biking-600.jpg with a real image path that you have ids, scores, bboxes, masks = [xx[0].asnumpy() for xx in mask_rcnn(x)] # paint segmentation mask on images directly width, height = orig_img.shape[1], orig_img.shape[0] masks, _ = utils.viz.expand_mask(masks, bboxes, (width, height), scores) orig_img = utils.viz.plot_mask(orig_img, masks) # identical to Faster RCNN object detection fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(1, 1, 1) ax = utils.viz.plot_bbox(orig_img, bboxes, scores, ids, class_names=mask_rcnn.classes, ax=ax) plt.show() print(np.sum(masks)) # This value stays the same whether you reinitialize the bias or not - which means it is not used print(np.sum(scores)) print(np.sum(bboxes)) ``` ## Environment <details> <summary>Environment Information</summary> ``` ----------Python Info---------- Version : 3.6.11 Compiler : GCC 5.4.0 20160609 Build : ('default', 'Jun 29 2020 05:15:03') Arch : ('64bit', 'ELF') ------------Pip Info----------- Version : 20.2.4 Directory : /home/tamirt/venv3.6/lib/python3.6/site-packages/pip ----------MXNet Info----------- Version : 1.7.0 Directory : /home/tamirt/venv3.6/lib/python3.6/site-packages/mxnet Commit Hash : 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a 64f737cdd59fe88d2c5b479f25d011c5156b6a8a Library : ['/home/tamirt/venv3.6/lib/python3.6/site-packages/mxnet/libmxnet.so'] Build features: ✖ CUDA ✖ CUDNN ✖ NCCL ✖ CUDA_RTC ✖ TENSORRT ✔ CPU_SSE ✔ CPU_SSE2 ✔ CPU_SSE3 ✔ CPU_SSE4_1 ✔ CPU_SSE4_2 ✖ CPU_SSE4A ✔ CPU_AVX ✖ CPU_AVX2 ✔ OPENMP ✖ SSE ✔ F16C ✖ JEMALLOC ✔ BLAS_OPEN ✖ BLAS_ATLAS ✖ BLAS_MKL ✖ BLAS_APPLE ✔ LAPACK ✔ MKLDNN ✔ OPENCV ✖ CAFFE ✖ PROFILER ✔ DIST_KVSTORE ✖ CXX14 ✖ INT64_TENSOR_SIZE ✔ SIGNAL_HANDLER ✖ DEBUG ✖ TVM_OP ----------System Info---------- Platform : Linux-4.15.0-129-generic-x86_64-with-Ubuntu-16.04-xenial system : Linux node : hai-211-lap.qb.hailotech release : 4.15.0-129-generic version : #132~16.04.1-Ubuntu SMP Wed Dec 16 06:46:04 UTC 2020 ----------Hardware Info---------- machine : x86_64 processor : x86_64 Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 142 Model name: Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz Stepping: 12 CPU MHz: 2794.722 CPU max MHz: 4800.0000 CPU min MHz: 400.0000 BogoMIPS: 4199.88 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 8192K NUMA node0 CPU(s): 0-7 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d arch_capabilities ----------Network Test---------- Setting timeout: 10 Timing for MXNet: https://github.com/apache/incubator-mxnet, DNS: 0.0932 sec, LOAD: 0.6922 sec. Timing for Gluon Tutorial(en): http://gluon.mxnet.io, DNS: 0.0122 sec, LOAD: 0.0945 sec. Error open Gluon Tutorial(cn): https://zh.gluon.ai, <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:852)>, DNS finished in 0.016017675399780273 sec. Timing for FashionMNIST: https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz, DNS: 0.0934 sec, LOAD: 0.8560 sec. Timing for PYPI: https://pypi.python.org/pypi/pip, DNS: 0.0251 sec, LOAD: 1.3593 sec. Error open Conda: https://repo.continuum.io/pkgs/free/, HTTP Error 403: Forbidden, DNS finished in 0.014355659484863281 sec. ----------Environment---------- KMP_DUPLICATE_LIB_OK="True" KMP_INIT_AT_FORK="FALSE" ``` </details> ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@mxnet.apache.org For additional commands, e-mail: issues-h...@mxnet.apache.org