matteosal opened a new issue #19841:
URL: https://github.com/apache/incubator-mxnet/issues/19841


   ## Description
   Some specific symbol evaluation fail with a CUDA error. I have reproduced 
this problem on:
   * mxnet 1.6 + CUDA 10.1
   * mxnet 1.6 + CUDA 11.2
   * mxnet 1.7 + CUDA 11.2
   
   (didn't try mxnet 1.7 + CUDA 10.1). My GPU is a GTX 1650 Mobile.
   
   ### Error Message
   ```
   mxnet.base.MXNetError: Traceback (most recent call last):
     [bt] (11) /lib/x86_64-linux-gnu/libc.so.6(clone+0x43) [0x7fcfe137d293]
     [bt] (10) /lib/x86_64-linux-gnu/libpthread.so.0(+0x9609) [0x7fcfe1241609]
     [bt] (9) /lib/x86_64-linux-gnu/libstdc++.so.6(+0xd6d84) [0x7fcfcfe04d84]
     [bt] (8) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(std::thread::_State_impl<std::thread::_Invoker<std::tuple<std::function<void
 (std::shared_ptr<dmlc::ManualEvent>)>, std::shared_ptr<dmlc::ManualEvent> > > 
>::_M_run()+0x4a) [0x7fcf900d826a]
     [bt] (7) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(std::_Function_handler<void
 (std::shared_ptr<dmlc::ManualEvent>), 
mxnet::engine::ThreadedEnginePerDevice::PushToExecute(mxnet::engine::OprBlock*, 
bool)::{lambda()#4}::operator()() 
const::{lambda(std::shared_ptr<dmlc::ManualEvent>)#1}>::_M_invoke(std::_Any_data
 const&, std::shared_ptr<dmlc::ManualEvent>&&)+0x4e) [0x7fcf900dcb9e]
     [bt] (6) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(void
 
mxnet::engine::ThreadedEnginePerDevice::GPUWorker<(dmlc::ConcurrentQueueType)0>(mxnet::Context,
 bool, 
mxnet::engine::ThreadedEnginePerDevice::ThreadWorkerBlock<(dmlc::ConcurrentQueueType)0>*,
 std::shared_ptr<dmlc::ManualEvent> const&)+0x11d) [0x7fcf900dc8fd]
     [bt] (5) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(mxnet::engine::ThreadedEngine::ExecuteOprBlock(mxnet::RunContext,
 mxnet::engine::OprBlock*)+0x11f) [0x7fcf900d91ff]
     [bt] (4) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(+0x18ae22a)
 [0x7fcf900ff22a]
     [bt] (3) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(mxnet::exec::FComputeExecutor::Run(mxnet::RunContext,
 bool)+0x6d) [0x7fcf900f143d]
     [bt] (2) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(void
 mxnet::FusedOp::Forward<mshadow::gpu>(nnvm::NodeAttrs const&, mxnet::OpContext 
const&, std::vector<mxnet::TBlob, std::allocator<mxnet::TBlob> > const&, 
std::vector<mxnet::OpReqType, std::allocator<mxnet::OpReqType> > const&, 
std::vector<mxnet::TBlob, std::allocator<mxnet::TBlob> > const&)+0x9e5) 
[0x7fcf938e6585]
     [bt] (1) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(mxnet::FusedOp::CompileCode(std::__cxx11::basic_string<char,
 std::char_traits<char>, std::allocator<char> > const&, 
std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > 
const&, int)+0x1228) [0x7fcf938de8c8]
     [bt] (0) 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so(dmlc::LogMessageFatal::~LogMessageFatal()+0x72)
 [0x7fcf8ff79e92]
     File 
"/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/src/operator/fusion/fused_op.cu",
 line 672
   MXNetError: CUDA Driver: an illegal memory access was encountered
   ```
   
   ## To Reproduce
   Download this json file then run the script: 
   [sym.zip](https://github.com/apache/incubator-mxnet/files/5926995/sym.zip)
   
   ```
   import mxnet as mx
   
   ctx = mx.gpu()
   sym = mx.symbol.load('path/to/sym.json')
   ex = sym.bind(ctx, args={"input": mx.nd.array([[1, 2, 3, 4]], ctx=ctx)})
   outputs = ex.forward()
   print(outputs)
   ```
   
   ## What have you tried to solve it?
   
   I'm building mxnet from source with cmake, and I also happen to be in 
possession of a 1.6 + CUDA 10.1 build (which is one of the combinations I've 
tried) which **doesn't** have this problem (but I don't have all the details on 
the settings/environment which produced it). This suggests that the problem can 
be fixed by some build settings, however I have spent significant time 
rebuilding with various settings and never managed to get anything. These are 
my cmake settings:
   
   ```
   cmake \
    `# GENERAL FLAGS` \
    -DCMAKE_INSTALL_PREFIX=$output_dir \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_SKIP_BUILD_RPATH=On \
    -DUSE_OPENCV=OFF \
    -DUSE_F16C=Off `# float16 support`\
    -DUSE_INT64_TENSOR_SIZE=On \
    -DCMAKE_C_FLAGS_RELEASE="-DNDEBUG" \
    -DCMAKE_CXX_FLAGS_RELEASE="-DNDEBUG --std=c++14" \
    `# MATH BACKENDS` \
    -DBLAS=MKL \
    -DUSE_LAPACK=OFF \
    -DUSE_MKLDNN=OFF \
    -DUSE_MKL_IF_AVAILABLE=ON \
    -DMKL_USE_ILP64=ON \
    -DMKL_USE_SINGLE_DYNAMIC_LIBRARY=OFF \
    -DMKL_ROOT=$mkl_dir \
    -DMKL_INCLUDE_DIR=$mkl_dir \
    
-DMKL_RT_LIBRARY="$mkl_dir/libmkl_def.so;$mkl_dir/libmkl_intel_ilp64.so;$mkl_dir/libmkl_core.so;$mkl_dir/libmkl_intel_thread.so;$mkl_dir/libiomp5.so"
 \
    `# OPENMP` \
    -DUSE_OPENMP=ON \
    -DOpenMP_C_FLAGS="-I$mkl_dir" \
    -DOpenMP_C_LIB_NAMES="libiomp5" \
    -DOpenMP_CXX_FLAGS="-I$mkl_dir" \
    -DOpenMP_CXX_LIB_NAMES="libiomp5" \
    -DOpenMP_libiomp5_LIBRARY="$mkl_dir/libiomp5.so" \
    `# CUDA` \
    -DUSE_CUDA=ON \
    -DUSE_CUDNN=ON \
    -DCUDNN_LIBRARY=$cudnn_dir/lib64/libcudnn.so.8 \
    -DCUDNN_INCLUDE=$cudnn_dir/include \
    -DUSE_NCCL=OFF \
    -DCUDNN_ROOT:PATH=$cudnn_dir \
    -DMXNET_CUDA_ARCH="7.5+PTX" \
    -DCUDAToolkit_ROOT=$cuda_dir \
    -DCMAKE_CUDA_COMPILER:PATH=$cuda_dir/bin/nvcc \
   ```
   
   ## Environment
   
   <details>
   <summary>Environment Information</summary>
   
   ```
   ----------Python Info----------
   Version      : 3.8.5
   Compiler     : GCC 9.3.0
   Build        : ('default', 'Jul 28 2020 12:59:40')
   Arch         : ('64bit', 'ELF')
   ------------Pip Info-----------
   Version      : 20.0.2
   Directory    : /usr/lib/python3/dist-packages/pip
   ----------MXNet Info-----------
   Version      : 1.7.0
   Directory    : 
/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet
   Commit hash file 
"/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/COMMIT_HASH"
 not found. Not installed from pre-built package or built from source.
   Library      : 
['/home/matteo/Git/mxnet-build/Build/Linux-x86-64/CUDA/mxnet/python/mxnet/../../lib/libmxnet.so']
   Build features:
   ✔ CUDA
   ✔ CUDNN
   ✖ NCCL
   ✔ CUDA_RTC
   ✖ TENSORRT
   ✔ CPU_SSE
   ✔ CPU_SSE2
   ✔ CPU_SSE3
   ✖ CPU_SSE4_1
   ✖ CPU_SSE4_2
   ✖ CPU_SSE4A
   ✖ CPU_AVX
   ✖ CPU_AVX2
   ✔ OPENMP
   ✖ SSE
   ✖ F16C
   ✖ JEMALLOC
   ✖ BLAS_OPEN
   ✖ BLAS_ATLAS
   ✔ BLAS_MKL
   ✖ BLAS_APPLE
   ✖ LAPACK
   ✖ MKLDNN
   ✖ OPENCV
   ✖ CAFFE
   ✖ PROFILER
   ✖ DIST_KVSTORE
   ✖ CXX14
   ✔ INT64_TENSOR_SIZE
   ✔ SIGNAL_HANDLER
   ✖ DEBUG
   ✖ TVM_OP
   ----------System Info----------
   Platform     : Linux-5.8.0-41-generic-x86_64-with-glibc2.29
   system       : Linux
   node         : pajarulo
   release      : 5.8.0-41-generic
   version      : #46~20.04.1-Ubuntu SMP Mon Jan 18 17:52:23 UTC 2021
   ----------Hardware Info----------
   machine      : x86_64
   processor    : x86_64
   Architecture:                    x86_64
   CPU op-mode(s):                  32-bit, 64-bit
   Byte Order:                      Little Endian
   Address sizes:                   39 bits physical, 48 bits virtual
   CPU(s):                          16
   On-line CPU(s) list:             0-15
   Thread(s) per core:              2
   Core(s) per socket:              8
   Socket(s):                       1
   NUMA node(s):                    1
   Vendor ID:                       GenuineIntel
   CPU family:                      6
   Model:                           158
   Model name:                      Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz
   Stepping:                        13
   CPU MHz:                         4161.311
   CPU max MHz:                     5000,0000
   CPU min MHz:                     800,0000
   BogoMIPS:                        4800.00
   Virtualization:                  VT-x
   L1d cache:                       256 KiB
   L1i cache:                       256 KiB
   L2 cache:                        2 MiB
   L3 cache:                        16 MiB
   NUMA node0 CPU(s):               0-15
   Vulnerability Itlb multihit:     KVM: Mitigation: VMX disabled
   Vulnerability L1tf:              Not affected
   Vulnerability Mds:               Not affected
   Vulnerability Meltdown:          Not affected
   Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass 
disabled via prctl and seccomp
   Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and 
__user pointer sanitization
   Vulnerability Spectre v2:        Mitigation; Enhanced IBRS, IBPB 
conditional, RSB filling
   Vulnerability Srbds:             Mitigation; TSX disabled
   Vulnerability Tsx async abort:   Mitigation; TSX disabled
   Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep 
mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe 
syscall nx pdpe1gb rdtscp lm constant_tsc art arch
                                    _perfmon pebs bts rep_good nopl xtopology 
nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 
ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2
                                    apic movbe popcnt tsc_deadline_timer aes 
xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single 
ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi
                                     flexpriority ept vpid ept_ad fsgsbase 
tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt 
intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat 
                                    pln pts hwp hwp_notify hwp_act_window 
hwp_epp md_clear flush_l1d arch_capabilities
   
   ```
   
   </details>
   


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]



---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to