[ 
https://issues.apache.org/jira/browse/OPENNLP-1309?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Jeffrey T. Zemerick resolved OPENNLP-1309.
------------------------------------------
    Resolution: Not A Bug

> NameFinderME - Unexpected result using unchanged training data
> --------------------------------------------------------------
>
>                 Key: OPENNLP-1309
>                 URL: https://issues.apache.org/jira/browse/OPENNLP-1309
>             Project: OpenNLP
>          Issue Type: Bug
>          Components: Name Finder
>    Affects Versions: 1.9.2
>            Reporter: Michael
>            Priority: Major
>
>  
> Hello,
> Based on 
> [NameFinderMETest.java|https://github.com/apache/opennlp/blob/master/opennlp-tools/src/test/java/opennlp/tools/namefind/NameFinderMETest.java]
>  / function _testNameFinder()_, I have written a simple test code and changed 
> the [test 
> sentence|https://github.com/apache/opennlp/blob/master/opennlp-tools/src/test/java/opennlp/tools/namefind/NameFinderMETest.java#L79]
>  from *(1)*:
> {code:java}
> String[] sentence = {"Alisa",
>  "appreciated",
>  "the",
>  "hint",
>  "and",
>  "enjoyed",
>  "a",
>  "delicious",
>  "traditional",
>  "meal."};
> {code}
> to *(2)*:
> {code:java}
> String[] sentence = {"Alisa",
>  "and",
>  "Mike",
>  "appreciated",
>  "the",
>  "hint",
>  "and",
>  "enjoyed",
>  "a",
>  "delicious",
>  "traditional",
>  "meal."};
> {code}
> (Just added "_and Mike_") and expected to get 2 results (two names _Alisa_ 
> and _Mike_) because both names are annotated in the training data. I just get 
> 1 result (Mike) for *(2)*. I used the training data file 
> [AnnotatedSentences.txt|https://github.com/apache/opennlp/blob/master/opennlp-tools/src/test/resources/opennlp/tools/namefind/AnnotatedSentences.txt]
>   (unchanged).
> Can anyone tell me what's wrong? Thanks.
> h3. +Test code:+
>  
> {code:java}
> String trainingDatafilePath = "opennlp/tools/namefind/AnnotatedSentences.txt";
> String encoding = "ISO-8859-1";
>  ObjectStream<NameSample> sampleStream = new NameSampleDataStream(new 
> PlainTextByLineStream(new MarkableFileInputStreamFactory(new 
> File(trainingDatafilePath+"AnnotatedSentences.txt")), encoding));
>  
>  TrainingParameters params = new TrainingParameters();
>  params.put(TrainingParameters.ITERATIONS_PARAM, 70);
>  params.put(TrainingParameters.CUTOFF_PARAM, 1);
> TokenNameFinderModel nameFinderModel = NameFinderME.train("eng", null, 
> sampleStream,
>  params, TokenNameFinderFactory.create(null, null, Collections.emptyMap(), 
> new BioCodec()));
> TokenNameFinder nameFinder = new NameFinderME(nameFinderModel);
> // now test if it can detect the sample sentences
>  String[] sentence = {"Alisa",
>  "and",
>  "Mike",
>  "appreciated",
>  "the",
>  "hint",
>  "and",
>  "enjoyed",
>  "a",
>  "delicious",
>  "traditional",
>  "meal."};
> Span[] names = nameFinder.find(sentence);
>  if (names != null && names.length != 0) {
>  System.out.println(" > Found ["+names.length+"] results");
>  for(Span name : names){
>  String personName="";
>  for(int i=name.getStart(); i<name.getEnd(); i++){
>  personName+=sentence[i]+" ";
>  }
>  System.out.println(" > Result "+1+": Type: ["+name.getType()+"] : 
> PersonName: ["+personName+"]\t [probability="+name.getProb()+"]");
>  }
>  } else {
>  System.out.println(" > No results found");
>  }
> {code}
>  
>  
> h3. +Result for (1):+
> Indexing events with TwoPass using cutoff of 1
>  Computing event counts... done. 1392 events
>  Indexing... done.
>  Collecting events... Done indexing in 0.22 s.
>  Incorporating indexed data for training... 
>  done.
>  Number of Event Tokens: 1392
>  Number of Outcomes: 3
>  Number of Predicates: 9164
>  Computing model parameters...
>  Performing 70 iterations.
>  1: . (1355/1392) 0.9734195402298851
>  2: . (1383/1392) 0.9935344827586207
>  3: . (1390/1392) 0.9985632183908046
>  4: . (1390/1392) 0.9985632183908046
>  5: . (1391/1392) 0.9992816091954023
>  6: . (1392/1392) 1.0
>  7: . (1392/1392) 1.0
>  8: . (1392/1392) 1.0
>  9: . (1392/1392) 1.0
>  Stopping: change in training set accuracy less than 1.0E-5
>  Stats: (1392/1392) 1.0
>  ...done.
> *Found [1] results*
>  *Result 1: Type: [default] : PersonName: [Alisa ] 
> [probability=0.5483001511243855]*
> h3.  
> +Result for (2):+
> Indexing events with TwoPass using cutoff of 1
>  Computing event counts... done. 1392 events
>  Indexing... done.
>  Collecting events... Done indexing in 0.22 s.
>  Incorporating indexed data for training... 
>  done.
>  Number of Event Tokens: 1392
>  Number of Outcomes: 3
>  Number of Predicates: 9164
>  Computing model parameters...
>  Performing 70 iterations.
>  1: . (1355/1392) 0.9734195402298851
>  2: . (1383/1392) 0.9935344827586207
>  3: . (1390/1392) 0.9985632183908046
>  4: . (1390/1392) 0.9985632183908046
>  5: . (1391/1392) 0.9992816091954023
>  6: . (1392/1392) 1.0
>  7: . (1392/1392) 1.0
>  8: . (1392/1392) 1.0
>  9: . (1392/1392) 1.0
>  Stopping: change in training set accuracy less than 1.0E-5
>  Stats: (1392/1392) 1.0
>  ...done.
> *Found [1] results*
>  *Result 1: Type: [default] : PersonName: [Mike ] 
> [probability=0.460685209028902]*



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to