[ 
https://issues.apache.org/jira/browse/SPARK-1849?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14000580#comment-14000580
 ] 

Mridul Muralidharan commented on SPARK-1849:
--------------------------------------------

You are missing my point ... textFile, for whatever reason, has been a
wrapper over TextInputFormat : which, as you observed assumes utf-8 (along
with quirks to handle badly encoded data to allow it to work at scale
reasonably well).

If you want to support specifying the encoding, there is no way around
writing your own InputFormat.

Now whether this becomes a new api contributed back to SparkContext or not
is a different question - but there is no way around the immediate problem
to unblock your requirement.



> Broken UTF-8 encoded data gets character replacements and thus can't be 
> "fixed"
> -------------------------------------------------------------------------------
>
>                 Key: SPARK-1849
>                 URL: https://issues.apache.org/jira/browse/SPARK-1849
>             Project: Spark
>          Issue Type: Bug
>            Reporter: Harry Brundage
>             Fix For: 1.0.0, 0.9.1
>
>         Attachments: encoding_test
>
>
> I'm trying to process a file which isn't valid UTF-8 data inside hadoop using 
> Spark via {{sc.textFile()}}. Is this possible, and if not, is this a bug that 
> we should fix? It looks like {{HadoopRDD}} uses 
> {{org.apache.hadoop.io.Text.toString}} on all the data it ever reads, which I 
> believe replaces invalid UTF-8 byte sequences with the UTF-8 replacement 
> character, \uFFFD. Some example code mimicking what {{sc.textFile}} does 
> underneath:
> {code}
> scala> sc.textFile(path).collect()(0)
> res8: String = ?pple
> scala> sc.hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], 
> classOf[Text]).map(pair => pair._2.toString).collect()(0).getBytes()
> res9: Array[Byte] = Array(-17, -65, -67, 112, 112, 108, 101)
> scala> sc.hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], 
> classOf[Text]).map(pair => pair._2.getBytes).collect()(0)
> res10: Array[Byte] = Array(-60, 112, 112, 108, 101)
> {code}
> In the above example, the first two snippets show the string representation 
> and byte representation of the example line of text. The string shows a 
> question mark for the replacement character and the bytes reveal the 
> replacement character has been swapped in by {{Text.toString}}. The third 
> snippet shows what happens if you call {{getBytes}} on the {{Text}} object 
> which comes back from hadoop land: we get the real bytes in the file out.
> Now, I think this is a bug, though you may disagree. The text inside my file 
> is perfectly valid iso-8859-1 encoded bytes, which I would like to be able to 
> rescue and re-encode into UTF-8, because I want my application to be smart 
> like that. I think Spark should give me the raw broken string so I can 
> re-encode, but I can't get at the original bytes in order to guess at what 
> the source encoding might be, as they have already been replaced. I'm dealing 
> with data from some CDN access logs which are to put it nicely diversely 
> encoded, but I think a use case Spark should fully support. So, my suggested 
> fix, which I'd like some guidance, is to change {{textFile}} to spit out 
> broken strings by not using {{Text}}'s UTF-8 encoding.
> Further compounding this issue is that my application is actually in PySpark, 
> but we can talk about how bytes fly through to Scala land after this if we 
> agree that this is an issue at all. 



--
This message was sent by Atlassian JIRA
(v6.2#6252)

Reply via email to