[
https://issues.apache.org/jira/browse/SPARK-1977?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14020460#comment-14020460
]
Xiangrui Meng commented on SPARK-1977:
--------------------------------------
[~smolav] and [~coderxiang]:
Thanks for testing it! Could you post the exact error message you got with
stack trace? Based on your description, it should be caused by the default
serialization of kryo. It may treat BitSet as a general Java collection, then
run into error in ser/de.
> mutable.BitSet in ALS not serializable with KryoSerializer
> ----------------------------------------------------------
>
> Key: SPARK-1977
> URL: https://issues.apache.org/jira/browse/SPARK-1977
> Project: Spark
> Issue Type: Bug
> Components: MLlib
> Affects Versions: 1.0.0
> Reporter: Neville Li
> Priority: Minor
>
> OutLinkBlock in ALS.scala has an Array[mutable.BitSet] member.
> KryoSerializer uses AllScalaRegistrar from Twitter chill but it doesn't
> register mutable.BitSet.
> Right now we have to register mutable.BitSet manually. A proper fix would be
> using immutable.BitSet in ALS or register mutable.BitSet in upstream chill.
> {code}
> Caused by: org.apache.spark.SparkException: Job aborted due to stage failure:
> Task 1724.0:9 failed 4 times, most recent failure: Exception failure in TID
> 68548 on host lon4-hadoopslave-b232.lon4.spotify.net:
> com.esotericsoftware.kryo.KryoException: java.lang.ArrayStoreException:
> scala.collection.mutable.HashSet
> Serialization trace:
> shouldSend (org.apache.spark.mllib.recommendation.OutLinkBlock)
>
> com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(FieldSerializer.java:626)
>
> com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:221)
> com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:732)
> com.twitter.chill.Tuple2Serializer.read(TupleSerializers.scala:43)
> com.twitter.chill.Tuple2Serializer.read(TupleSerializers.scala:34)
> com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:732)
>
> org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:115)
>
> org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:125)
> org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:71)
>
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
>
> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:155)
>
> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:154)
>
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:154)
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31)
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>
> org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31)
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
> org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33)
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
> org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:77)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:227)
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111)
> org.apache.spark.scheduler.Task.run(Task.scala:51)
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187)
>
> java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
>
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
> java.lang.Thread.run(Thread.java:662)
> Driver stacktrace:
> at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1033)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1017)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1015)
> at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1015)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:633)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:633)
> at scala.Option.foreach(Option.scala:236)
> at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:633)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1207)
> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
> at akka.actor.ActorCell.invoke(ActorCell.scala:456)
> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
> at akka.dispatch.Mailbox.run(Mailbox.scala:219)
> at
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
> at
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
> at
> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
> at
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> {code}
--
This message was sent by Atlassian JIRA
(v6.2#6252)