Mingyu Kim created SPARK-3050:
---------------------------------

             Summary: Spark program running with 1.0.2 jar cannot run against a 
1.0.1 cluster
                 Key: SPARK-3050
                 URL: https://issues.apache.org/jira/browse/SPARK-3050
             Project: Spark
          Issue Type: Bug
    Affects Versions: 1.0.2
            Reporter: Mingyu Kim
            Priority: Critical


I ran the following code with Spark 1.0.2 jar against a cluster that runs Spark 
1.0.1 (i.e. localhost:7077 is running 1.0.1).

{code}
import java.util.ArrayList;
import java.util.List;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;

public class TestTest {

    public static void main(String[] args) {
        JavaSparkContext sc = new JavaSparkContext("spark://localhost:7077", 
"Test");
        List<Integer> list = new ArrayList<>();
        list.add(1);
        list.add(2);
        list.add(3);
        JavaRDD<Integer> rdd = sc.parallelize(list);
        System.out.println(rdd.collect());
    }

}
{code}

This throws InvalidClassException.

{code}
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to 
stage failure: Task 0.0:1 failed 4 times, most recent failure: Exception 
failure in TID 6 on host 10.100.91.90: java.io.InvalidClassException: 
org.apache.spark.rdd.RDD; local class incompatible: stream classdesc 
serialVersionUID = -6766554341038829528, local class serialVersionUID = 
385418487991259089
        java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:604)
        java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1620)
        java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1515)
        java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1620)
        java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1515)
        
java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1769)
        java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1348)
        java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
        
org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:63)
        
org.apache.spark.scheduler.ResultTask$.deserializeInfo(ResultTask.scala:61)
        org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:141)
        java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1835)
        
java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1794)
        java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1348)
        java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
        
org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:63)
        
org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:85)
        org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:165)
        
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        java.lang.Thread.run(Thread.java:722)
Driver stacktrace:
        at 
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
        at 
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635)
        at scala.Option.foreach(Option.scala:236)
        at 
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:635)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1234)
        at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
        at akka.actor.ActorCell.invoke(ActorCell.scala:456)
        at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
        at akka.dispatch.Mailbox.run(Mailbox.scala:219)
        at 
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
        at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
        at 
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
        at 
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
        at 
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
{code}

I thought minor version releases and patch releases should be 
binary-compatible. Is that not true?



--
This message was sent by Atlassian JIRA
(v6.2#6252)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to