Andras Nemeth created SPARK-3070:
------------------------------------
Summary: Kry deserialization without using the custom registrator
Key: SPARK-3070
URL: https://issues.apache.org/jira/browse/SPARK-3070
Project: Spark
Issue Type: Bug
Components: Spark Core
Affects Versions: 1.0.2
Reporter: Andras Nemeth
If an RDD partition is cached on executor1 and used by a task on executor2 then
the partition needs to be serialized and sent over. For this particular
serialization/deserialization usecase, when using kry, it appears that the
custom registrator will not be used on the deserialization side. This of course
results in some totally misleading kry deserialization errors.
The cause for this behavior seems to be that the thread running this
deserialization has a classloader which does not have the jars specified in the
SparkConf on its classpath. So it fails to load the Registrator with a
ClassNotFoundException, but it catches the exception and happily continues
without a registrator. (A bug on its own right in my opinion.)
To reproduce, have two rdds partitioned the same way (as in with the same
partitioner) but corresponding partitions cached on different machines, then
join them. See below a somewhat convoluted way to achieve this. If you run the
below program on a spark cluster with two workers, each with one core, you will
be able to trigger the bug. Basically it runs two counts in parallel, which
ensures that the two RDDs will be computed in parallel, and as a consequence on
different executors.
{code:scala}
import com.esotericsoftware.kryo.Kryo
import org.apache.spark.HashPartitioner
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
import org.apache.spark.serializer.KryoRegistrator
import scala.actors.Actor
case class MyClass(a: Int)
class MyKryoRegistrator extends KryoRegistrator {
override def registerClasses(kryo: Kryo) {
kryo.register(classOf[MyClass])
}
}
class CountActor(rdd: RDD[_]) extends Actor {
def act() {
println("Start count")
println(rdd.count)
println("Stop count")
}
}
object KryBugExample {
def main(args: Array[String]) {
val sparkConf = new SparkConf()
.setMaster(args(0))
.setAppName("KryBugExample")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.set("spark.kryo.registrator", "MyKryoRegistrator")
.setJars(Seq("target/scala-2.10/krybugexample_2.10-0.1-SNAPSHOT.jar"))
val sc = new SparkContext(sparkConf)
val partitioner = new HashPartitioner(1)
val rdd1 = sc
.parallelize((0 until 100000).map(i => (i, MyClass(i))), 1)
.partitionBy(partitioner).cache
val rdd2 = sc
.parallelize((0 until 100000).map(i => (i, MyClass(i * 2))), 1)
.partitionBy(partitioner).cache
new CountActor(rdd1).start
new CountActor(rdd2).start
println(rdd1.join(rdd2).count)
while (true) {}
}
}
{code}
--
This message was sent by Atlassian JIRA
(v6.2#6252)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]