[ 
https://issues.apache.org/jira/browse/SPARK-3114?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Josh Rosen resolved SPARK-3114.
-------------------------------

       Resolution: Fixed
    Fix Version/s: 1.1.0

> Python UDFS broken in Spark SQL
> -------------------------------
>
>                 Key: SPARK-3114
>                 URL: https://issues.apache.org/jira/browse/SPARK-3114
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark, SQL
>    Affects Versions: 1.1.0
>            Reporter: Josh Rosen
>            Assignee: Josh Rosen
>            Priority: Blocker
>             Fix For: 1.1.0
>
>
> Python UDFs were inadvertently broken in SparkSQL by the PySpark 
> broadcast-optimization commit:
> {code}
> **********************************************************************
> File "/Users/joshrosen/Documents/Spark/python/pyspark/sql.py", line 975, in 
> pyspark.sql.SQLContext.registerFunction
> Failed example:
>     sqlCtx.sql("SELECT twoArgs('test', 1)").collect()
> Exception raised:
>     Traceback (most recent call last):
>       File 
> "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/doctest.py",
>  line 1253, in __run
>         compileflags, 1) in test.globs
>       File "<doctest pyspark.sql.SQLContext.registerFunction[5]>", line 1, in 
> <module>
>         sqlCtx.sql("SELECT twoArgs('test', 1)").collect()
>       File "/Users/joshrosen/Documents/Spark/python/pyspark/sql.py", line 
> 1615, in collect
>         rows = RDD.collect(self)
>       File "/Users/joshrosen/Documents/Spark/python/pyspark/rdd.py", line 
> 725, in collect
>         bytesInJava = self._jrdd.collect().iterator()
>       File 
> "/Users/joshrosen/Documents/Spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py",
>  line 538, in __call__
>         self.target_id, self.name)
>       File 
> "/Users/joshrosen/Documents/Spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py",
>  line 300, in get_return_value
>         format(target_id, '.', name), value)
>     Py4JJavaError: An error occurred while calling o607.collect.
>     : org.apache.spark.SparkException: Job aborted due to stage failure: Task 
> 0 in stage 60.0 failed 1 times, most recent failure: Lost task 0.0 in stage 
> 60.0 (TID 141, localhost): org.apache.spark.api.python.PythonException: 
> Traceback (most recent call last):
>       File "pyspark/worker.py", line 75, in main
>         command = ser._read_with_length(infile)
>       File "pyspark/serializers.py", line 150, in _read_with_length
>         return self.loads(obj)
>       File "pyspark/serializers.py", line 420, in loads
>         return self.serializer.loads(zlib.decompress(obj))
>     error: Error -3 while decompressing data: incorrect header check
>             
> org.apache.spark.api.python.PythonRDD$$anon$1.read(PythonRDD.scala:124)
>             
> org.apache.spark.api.python.PythonRDD$$anon$1.<init>(PythonRDD.scala:154)
>             org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:87)
>             org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>             org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>             
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>             org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>             org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>             
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>             org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>             org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>             
> org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:87)
>             org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>             org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>             
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>             org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>             org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>             
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>             org.apache.spark.sql.SchemaRDD.compute(SchemaRDD.scala:115)
>             org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>             org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>             
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>             org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>             org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>             org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
>             org.apache.spark.scheduler.Task.run(Task.scala:54)
>             
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:199)
>             
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>             
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>             java.lang.Thread.run(Thread.java:745)
>     Driver stacktrace:
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1153)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1142)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1141)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>       at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1141)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:682)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:682)
>       at scala.Option.foreach(Option.scala:236)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:682)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1359)
>       at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>       at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>       at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>       at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>       at 
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
>       at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>       at 
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>       at 
> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>       at 
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> {code}
> The zlib compression was introduced in a recent commit for improving 
> PySpark’s broadcast variable performance 
> (https://github.com/apache/spark/pull/1912).  It looks like the worker is 
> expecting to receive a zlib-compressed command, but somehow is receiving 
> something else.  
> It looks like the code that registers Python UDFs doesn’t perform this 
> compression, leading to this issue:
> {code}
>         self._ssql_ctx.registerPython(name,
>                                       
> bytearray(CloudPickleSerializer().dumps(command)),
>                                       env,
>                                       includes,
>                                       self._sc.pythonExec,
>                                       self._sc._javaAccumulator,
>                                       str(returnType))
> {code}
> The root problem here is that the SparkSQL Python tests weren't run by 
> Jenkins.  I think the problem is that PySpark’s SparkSQL tests are skipped 
> unless _RUN_SQL_TESTS is true, and this is variable is only set when we 
> detect changes to SparkSQL.  Instead, it should always be set when running 
> the PySpark tests.



--
This message was sent by Atlassian JIRA
(v6.2#6252)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to