Luke Miner created SPARK-14141:
----------------------------------

             Summary: Let user specify datatypes of pandas dataframe in 
toPandas()
                 Key: SPARK-14141
                 URL: https://issues.apache.org/jira/browse/SPARK-14141
             Project: Spark
          Issue Type: New Feature
          Components: Input/Output, PySpark, SQL
            Reporter: Luke Miner
            Priority: Minor


Would be nice to specify the dtypes of the pandas dataframe during the 
toPandas() call. Something like:

bq. pdf = df.toPandas(dtypes={'a': 'float64', 'b': 'datetime64', 'c': 'bool', 
'd': 'category'})

Since dtypes like `category` are more memory efficient, you could potentially 
load many more rows into a pandas dataframe with this option without running 
out of memory.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to