Luke Miner created SPARK-14141: ---------------------------------- Summary: Let user specify datatypes of pandas dataframe in toPandas() Key: SPARK-14141 URL: https://issues.apache.org/jira/browse/SPARK-14141 Project: Spark Issue Type: New Feature Components: Input/Output, PySpark, SQL Reporter: Luke Miner Priority: Minor
Would be nice to specify the dtypes of the pandas dataframe during the toPandas() call. Something like: bq. pdf = df.toPandas(dtypes={'a': 'float64', 'b': 'datetime64', 'c': 'bool', 'd': 'category'}) Since dtypes like `category` are more memory efficient, you could potentially load many more rows into a pandas dataframe with this option without running out of memory. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org