[
https://issues.apache.org/jira/browse/SPARK-14363?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Sital Kedia updated SPARK-14363:
--------------------------------
Description:
While running a Spark job, we see that the job fails because of executor OOM
with following stack trace -
{code}
java.lang.OutOfMemoryError: Unable to acquire 76 bytes of memory, got 0
at
org.apache.spark.memory.MemoryConsumer.allocatePage(MemoryConsumer.java:120)
at
org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPageIfNecessary(UnsafeExternalSorter.java:326)
at
org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.insertRecord(UnsafeExternalSorter.java:341)
at
org.apache.spark.sql.execution.UnsafeExternalRowSorter.insertRow(UnsafeExternalRowSorter.java:91)
at
org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:168)
at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:90)
at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:64)
at
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
at
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
{code}
was:
The job fails because of executor OOM with following stack trace -
{code}
java.lang.OutOfMemoryError: Unable to acquire 76 bytes of memory, got 0
at
org.apache.spark.memory.MemoryConsumer.allocatePage(MemoryConsumer.java:120)
at
org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPageIfNecessary(UnsafeExternalSorter.java:326)
at
org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.insertRecord(UnsafeExternalSorter.java:341)
at
org.apache.spark.sql.execution.UnsafeExternalRowSorter.insertRow(UnsafeExternalRowSorter.java:91)
at
org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:168)
at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:90)
at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:64)
at
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
at
org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
{code}
> Executor OOM while trying to acquire new page from the memory manager
> ---------------------------------------------------------------------
>
> Key: SPARK-14363
> URL: https://issues.apache.org/jira/browse/SPARK-14363
> Project: Spark
> Issue Type: Bug
> Components: Shuffle
> Affects Versions: 1.6.1
> Reporter: Sital Kedia
>
> While running a Spark job, we see that the job fails because of executor OOM
> with following stack trace -
> {code}
> java.lang.OutOfMemoryError: Unable to acquire 76 bytes of memory, got 0
> at
> org.apache.spark.memory.MemoryConsumer.allocatePage(MemoryConsumer.java:120)
> at
> org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPageIfNecessary(UnsafeExternalSorter.java:326)
> at
> org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.insertRecord(UnsafeExternalSorter.java:341)
> at
> org.apache.spark.sql.execution.UnsafeExternalRowSorter.insertRow(UnsafeExternalRowSorter.java:91)
> at
> org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:168)
> at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:90)
> at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:64)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
> at org.apache.spark.scheduler.Task.run(Task.scala:89)
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:745)
> {code}
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]