[ 
https://issues.apache.org/jira/browse/SPARK-13857?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15236796#comment-15236796
 ] 

Nick Pentreath commented on SPARK-13857:
----------------------------------------

[~mengxr] [~josephkb]

In an ideal world, this is what train-validation split with ALS would look like:

{code}
// Prepare training and test data.
val ratings = ...
val Array(training, test) = ratings.randomSplit(Array(0.8, 0.2))

// set up ALS with top-k prediction
val als = new ALS()
  .setMaxIter(5)
  .setImplicitPrefs(true)
  .setK(10)
  .setTopKInputCol("user")
  .setTopKOutputCol("topk")

// build param grid
val paramGrid = new ParamGridBuilder()
  .addGrid(als.regParam, Array(0.01, 0.05, 0.1))
  .addGrid(als.alpha, Array(1.0, 10.0, 20.0))
  .build()
// ranking evaluator with appropriate prediction column
val evaluator = new RankingEvaluator()
  .setPredictionCol("topk")
  .setMetricName("mapk")
  .setK(10)
  .setLabelCol("actual")
val trainValidationSplit = new TrainValidationSplit()
  .setEstimator(als)
  .setEvaluator(evaluator)
  .setEstimatorParamMaps(paramGrid)
  // 80% of the data will be used for training and the remaining 20% for 
validation.
  .setTrainRatio(0.8)

// Run train validation split, and choose the best set of parameters.
val model = trainValidationSplit.fit(training)

// Make predictions on test data. model is the model with combination of 
parameters
// that performed best.
model.transform(test)
  .select("user", "actual", "topk")
  .show()
{code}

> Feature parity for ALS ML with MLLIB
> ------------------------------------
>
>                 Key: SPARK-13857
>                 URL: https://issues.apache.org/jira/browse/SPARK-13857
>             Project: Spark
>          Issue Type: Sub-task
>          Components: ML
>            Reporter: Nick Pentreath
>            Assignee: Nick Pentreath
>
> Currently {{mllib.recommendation.MatrixFactorizationModel}} has methods 
> {{recommendProducts/recommendUsers}} for recommending top K to a given user / 
> item, as well as {{recommendProductsForUsers/recommendUsersForProducts}} to 
> recommend top K across all users/items.
> Additionally, SPARK-10802 is for adding the ability to do 
> {{recommendProductsForUsers}} for a subset of users (or vice versa).
> Look at exposing or porting (as appropriate) these methods to ALS in ML. 
> Investigate if efficiency can be improved at the same time (see SPARK-11968).



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to