[ https://issues.apache.org/jira/browse/SPARK-15404?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
郭同 updated SPARK-15404: ----------------------- Description: from __future__ import print_function import os import sys from pyspark import SparkContext from pyspark.sql import SQLContext from pyspark.sql.types import Row, StructField, StructType, StringType, IntegerType if __name__ == "__main__": sc = SparkContext(appName="PythonSQL") sqlContext = SQLContext(sc) schema = StructType([StructField("person_name", StringType(), False), StructField("person_age", IntegerType(), False)]) some_rdd = sc.parallelize([Row(person_name="John", person_age=19), Row(person_name="Smith", person_age=23), Row(person_name="Sarah", person_age=18)]) some_df = sqlContext.createDataFrame(some_rdd, schema) some_df.printSchema() some_df.registerAsTable("people") teenagers = sqlContext.sql("SELECT * FROM people ") for each in teenagers.collect(): print(each) sc.stop() was: # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import os import sys from pyspark import SparkContext from pyspark.sql import SQLContext from pyspark.sql.types import Row, StructField, StructType, StringType, IntegerType if __name__ == "__main__": sc = SparkContext(appName="PythonSQL") sqlContext = SQLContext(sc) schema = StructType([StructField("person_name", StringType(), False), StructField("person_age", IntegerType(), False)]) # RDD is created from a list of rows some_rdd = sc.parallelize([Row(person_name="John", person_age=19), Row(person_name="Smith", person_age=23), Row(person_name="Sarah", person_age=18)]) # Infer schema from the first row, create a DataFrame and print the schema some_df = sqlContext.createDataFrame(some_rdd, schema) some_df.printSchema() # Another RDD is created from a list of tuples another_rdd = sc.parallelize([("John", 19), ("Smith", 23), ("Sarah", 18)]) # Schema with two fields - person_name and person_age # Create a DataFrame by applying the schema to the RDD and print the schema another_df = sqlContext.createDataFrame(another_rdd, schema) another_df.printSchema() # print(some_df.filter(some_df.age > 20).collect()) # root # |-- age: integer (nullable = true) # |-- name: string (nullable = true) # A JSON dataset is pointed to by path. # The path can be either a single text file or a directory storing text files. if len(sys.argv) < 2: path = "file://" + \ os.path.join(os.environ['SPARK_HOME'], "examples/src/main/resources/people.json") else: path = sys.argv[1] # Create a DataFrame from the file(s) pointed to by path people = sqlContext.jsonFile(path) # root # |-- person_name: string (nullable = false) # |-- person_age: integer (nullable = false) # The inferred schema can be visualized using the printSchema() method. people.printSchema() # root # |-- age: IntegerType # |-- name: StringType # Register this DataFrame as a table. people.registerAsTable("people") some_df.registerAsTable("people2") # SQL statements can be run by using the sql methods provided by sqlContext teenagers = sqlContext.sql("SELECT * FROM people2 ") print("!!!!!---------------\n") for each in teenagers.collect(): print(each) print("---------------\n") print("!!!!!-------------\n") sc.stop() > pyspark sql bug ,here is the testcase > ------------------------------------- > > Key: SPARK-15404 > URL: https://issues.apache.org/jira/browse/SPARK-15404 > Project: Spark > Issue Type: Bug > Environment: 1.6 > Reporter: 郭同 > > from __future__ import print_function > import os > import sys > from pyspark import SparkContext > from pyspark.sql import SQLContext > from pyspark.sql.types import Row, StructField, StructType, StringType, > IntegerType > if __name__ == "__main__": > sc = SparkContext(appName="PythonSQL") > sqlContext = SQLContext(sc) > schema = StructType([StructField("person_name", StringType(), False), > StructField("person_age", IntegerType(), False)]) > some_rdd = sc.parallelize([Row(person_name="John", person_age=19), > Row(person_name="Smith", person_age=23), > Row(person_name="Sarah", person_age=18)]) > some_df = sqlContext.createDataFrame(some_rdd, schema) > some_df.printSchema() > some_df.registerAsTable("people") > teenagers = sqlContext.sql("SELECT * FROM people ") > for each in teenagers.collect(): > print(each) > sc.stop() -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org