[ 
https://issues.apache.org/jira/browse/SPARK-16334?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15363438#comment-15363438
 ] 

Vladimir Ivanov edited comment on SPARK-16334 at 7/6/16 6:54 PM:
-----------------------------------------------------------------

Hi, we discovered problem with the same stacktrace in Spark 2.0. In our case 
it's thrown during DataFrame.rdd call. Moreover it somehow depends on volume of 
data, because it is not thrown when we change filter criteria accordingly. We 
used SparkSQL to write these parquet files and didn't explicitly specify 
WriterVersion option so I believe whatever version is set by default was used.


was (Author: vivanov):
Hi, we discovered problem with the same stacktrace in Spark 2.0. In our case 
it's thrown during {noformat}DataFrame.rdd{noformat} call. Moreover it somehow 
depends on volume of data, because it is not thrown when we change filter 
criteria accordingly. We used SparkSQL to write these parquet files and didn't 
explicitly specify WriterVersion option so I believe whatever version is set by 
default was used.

> [SQL] SQL query on parquet table java.lang.ArrayIndexOutOfBoundsException
> -------------------------------------------------------------------------
>
>                 Key: SPARK-16334
>                 URL: https://issues.apache.org/jira/browse/SPARK-16334
>             Project: Spark
>          Issue Type: Bug
>    Affects Versions: 2.0.0
>            Reporter: Egor Pahomov
>            Priority: Critical
>              Labels: sql
>
> Query:
> {code}
> select * from blabla where user_id = 415706251
> {code}
> Error:
> {code}
> 16/06/30 14:07:27 WARN scheduler.TaskSetManager: Lost task 11.0 in stage 0.0 
> (TID 3, hadoop6): java.lang.ArrayIndexOutOfBoundsException: 6934
>         at 
> org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainBinaryDictionary.decodeToBinary(PlainValuesDictionary.java:119)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.decodeDictionaryIds(VectorizedColumnReader.java:273)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBatch(VectorizedColumnReader.java:170)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:230)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:137)
>         at 
> org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:36)
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:91)
>         at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown
>  Source)
>         at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>  Source)
>         at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>         at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:246)
>         at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
>         at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:780)
>         at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:780)
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>         at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
>         at org.apache.spark.scheduler.Task.run(Task.scala:85)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>         at java.lang.Thread.run(Thread.java:745)
> {code}
> Work on 1.6.1



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to