Steven Lowenthal created SPARK-16513:
----------------------------------------

             Summary: Spark executore deadlocks itself in memory management
                 Key: SPARK-16513
                 URL: https://issues.apache.org/jira/browse/SPARK-16513
             Project: Spark
          Issue Type: Bug
          Components: Spark Core
    Affects Versions: 1.6.1
            Reporter: Steven Lowenthal


I have a spark streaming application which uses stateful RDDs (2 to be exact), 
but a given job only uses one.  The last part of the executor stderr log is 
enclosed.  There is no output in stdout.  There are 3 concurrent Spark tasks on 
the executor deadlocked as follows:  


org.apache.spark.storage.BlockManager.dropFromMemory(BlockManager.scala:1029)
org.apache.spark.storage.BlockManager.dropFromMemory(BlockManager.scala:1009)
org.apache.spark.storage.MemoryStore$$anonfun$evictBlocksToFreeSpace$2.apply(MemoryStore.scala:460)
org.apache.spark.storage.MemoryStore$$anonfun$evictBlocksToFreeSpace$2.apply(MemoryStore.scala:449)
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
org.apache.spark.storage.MemoryStore.evictBlocksToFreeSpace(MemoryStore.scala:449)
org.apache.spark.memory.StorageMemoryPool.acquireMemory(StorageMemoryPool.scala:89)
org.apache.spark.memory.StorageMemoryPool.acquireMemory(StorageMemoryPool.scala:69)
org.apache.spark.memory.UnifiedMemoryManager.acquireStorageMemory(UnifiedMemoryManager.scala:155)
org.apache.spark.memory.UnifiedMemoryManager.acquireUnrollMemory(UnifiedMemoryManager.scala:162)
org.apache.spark.storage.MemoryStore.reserveUnrollMemoryForThisTask(MemoryStore.scala:493)
org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:291)
org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:171)
org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
org.apache.spark.scheduler.Task.run(Task.scala:89)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)



org.apache.spark.storage.MemoryStore.tryToPut(MemoryStore.scala:379)
org.apache.spark.storage.MemoryStore.tryToPut(MemoryStore.scala:346)
org.apache.spark.storage.MemoryStore.putArray(MemoryStore.scala:133)
org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:800)
org.apache.spark.storage.BlockManager.putArray(BlockManager.scala:676)
org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:175)
org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
org.apache.spark.scheduler.Task.run(Task.scala:89)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)



org.apache.spark.memory.MemoryManager.releaseExecutionMemory(MemoryManager.scala:120)
org.apache.spark.memory.TaskMemoryManager.releaseExecutionMemory(TaskMemoryManager.java:201)
org.apache.spark.util.collection.Spillable$class.releaseMemory(Spillable.scala:111)
org.apache.spark.util.collection.ExternalSorter.releaseMemory(ExternalSorter.scala:89)
org.apache.spark.util.collection.ExternalSorter.stop(ExternalSorter.scala:694)
org.apache.spark.shuffle.sort.SortShuffleWriter.stop(SortShuffleWriter.scala:95)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:74)
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
org.apache.spark.scheduler.Task.run(Task.scala:89)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)



This is the log file exerpt:





--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to