[ 
https://issues.apache.org/jira/browse/SPARK-17477?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15504811#comment-15504811
 ] 

Apache Spark commented on SPARK-17477:
--------------------------------------

User 'wgtmac' has created a pull request for this issue:
https://github.com/apache/spark/pull/15035

> SparkSQL cannot handle schema evolution from Int -> Long when parquet files 
> have Int as its type while hive metastore has Long as its type
> ------------------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-17477
>                 URL: https://issues.apache.org/jira/browse/SPARK-17477
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.0.0
>            Reporter: Gang Wu
>
> When using SparkSession to read a Hive table which is stored as parquet 
> files. If there has been a schema evolution from int to long of a column. 
> There are some old parquet files use int for the column while some new 
> parquet files use long. In Hive metastore, the type is long (bigint).
> Therefore when I use the following:
> {quote}
> sparkSession.sql("select * from table").show()
> {quote}
> I got the following exception:
> {quote}
> 16/08/29 17:50:20 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 3.0 
> (TID 91, XXX): org.apache.parquet.io.ParquetDecodingException: Can not read 
> value at 0 in block 0 in file 
> hdfs://path/to/parquet/1-part-r-00000-d8e4f5aa-b6b9-4cad-8432-a7ae7a590a93.gz.parquet
>               at 
> org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:228)
>               at 
> org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:201)
>               at 
> org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:36)
>               at 
> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>               at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:91)
>               at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:128)
>               at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:91)
>               at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>  Source)
>               at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>               at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
>               at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:246)
>               at 
> org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
>               at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
>               at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:784)
>               at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>               at 
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
>               at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
>               at 
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
>               at org.apache.spark.scheduler.Task.run(Task.scala:85)
>               at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
>               at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>               at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>               at java.lang.Thread.run(Thread.java:745)
> Caused by: java.lang.ClassCastException: 
> org.apache.spark.sql.catalyst.expressions.MutableLong cannot be cast to 
> org.apache.spark.sql.catalyst.expressions.MutableInt
>               at 
> org.apache.spark.sql.catalyst.expressions.SpecificMutableRow.setInt(SpecificMutableRow.scala:246)
>               at 
> org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$RowUpdater.setInt(ParquetRowConverter.scala:161)
>               at 
> org.apache.spark.sql.execution.datasources.parquet.ParquetPrimitiveConverter.addInt(ParquetRowConverter.scala:85)
>               at 
> org.apache.parquet.column.impl.ColumnReaderImpl$2$3.writeValue(ColumnReaderImpl.java:249)
>               at 
> org.apache.parquet.column.impl.ColumnReaderImpl.writeCurrentValueToConverter(ColumnReaderImpl.java:365)
>               at 
> org.apache.parquet.io.RecordReaderImplementation.read(RecordReaderImplementation.java:405)
>               at 
> org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:209)
>               ... 22 more
> {quote}
> But this kind of schema evolution (int => long) is valid is Hive and Presto.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to