[ 
https://issues.apache.org/jira/browse/SPARK-16321?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Jeff Zhang updated SPARK-16321:
-------------------------------
    Component/s:     (was: PySpark)
                 SQL

> [Spark 2.0] Performance regression when reading parquet and using PPD and 
> non-vectorized reader
> -----------------------------------------------------------------------------------------------
>
>                 Key: SPARK-16321
>                 URL: https://issues.apache.org/jira/browse/SPARK-16321
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.0.0
>            Reporter: Maciej BryƄski
>            Assignee: Liang-Chi Hsieh
>            Priority: Critical
>             Fix For: 2.0.1, 2.1.0
>
>         Attachments: Spark16.nps, Spark2.nps, spark16._trace.png, 
> spark16_query.nps, spark2_nofilterpushdown.nps, spark2_query.nps, 
> spark2_trace.png, visualvm_spark16.png, visualvm_spark2.png, 
> visualvm_spark2_G1GC.png
>
>
> *UPDATE*
> Please start with this comment 
> https://issues.apache.org/jira/browse/SPARK-16321?focusedCommentId=15383785&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-15383785
> I assume that problem results from the performance problem with reading 
> parquet files
> *Original Issue description*
> I did some test on parquet file with many nested columns (about 30G in
> 400 partitions) and Spark 2.0 is 2x slower.
> {code}
> df = sqlctx.read.parquet(path)
> df.where('id > some_id').rdd.flatMap(lambda r: [r.id] if not r.id %100000 
> else []).collect()
> {code}
> Spark 1.6 -> 2.3 min
> Spark 2.0 -> 4.6 min (2x slower)
> I used BasicProfiler for this task and cumulative time was:
> Spark 1.6 - 4300 sec
> Spark 2.0 - 5800 sec
> Should I expect such a drop in performance ?
> I don't know how to prepare sample data to show the problem.
> Any ideas ? Or public data with many nested columns ?



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to