[
https://issues.apache.org/jira/browse/SPARK-17993?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15815965#comment-15815965
]
Michael Allman commented on SPARK-17993:
----------------------------------------
Hi Emre,
Thanks for reporting this. To clarify, what do you mean by "the
parquet-mr version" is different.
> Spark prints an avalanche of warning messages from Parquet when reading
> parquet files written by older versions of Parquet-mr
> -----------------------------------------------------------------------------------------------------------------------------
>
> Key: SPARK-17993
> URL: https://issues.apache.org/jira/browse/SPARK-17993
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Reporter: Michael Allman
> Assignee: Michael Allman
> Fix For: 2.1.0
>
>
> It looks like https://github.com/apache/spark/pull/14690 broke parquet log
> output redirection. After that patch, when querying parquet files written by
> Parquet-mr 1.6.0 Spark prints a torrent of (harmless) warning messages from
> the Parquet reader:
> {code}
> Oct 18, 2016 7:42:18 PM WARNING: org.apache.parquet.CorruptStatistics:
> Ignoring statistics because created_by could not be parsed (see PARQUET-251):
> parquet-mr version 1.6.0
> org.apache.parquet.VersionParser$VersionParseException: Could not parse
> created_by: parquet-mr version 1.6.0 using format: (.+) version ((.*)
> )?\(build ?(.*)\)
> at org.apache.parquet.VersionParser.parse(VersionParser.java:112)
> at
> org.apache.parquet.CorruptStatistics.shouldIgnoreStatistics(CorruptStatistics.java:60)
> at
> org.apache.parquet.format.converter.ParquetMetadataConverter.fromParquetStatistics(ParquetMetadataConverter.java:263)
> at
> org.apache.parquet.hadoop.ParquetFileReader$Chunk.readAllPages(ParquetFileReader.java:583)
> at
> org.apache.parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:513)
> at
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.checkEndOfRowGroup(VectorizedParquetRecordReader.java:270)
> at
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:225)
> at
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:137)
> at
> org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:102)
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:162)
> at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:102)
> at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown
> Source)
> at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
> Source)
> at
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
> at
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:372)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
> at org.apache.spark.scheduler.Task.run(Task.scala:99)
> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:745)
> {code}
> This only happens during execution, not planning, and it doesn't matter what
> log level the {{SparkContext}} is set to.
> This is a regression I noted as something we needed to fix as a follow up to
> PR 14690. I feel responsible, so I'm going to expedite a fix for it. I
> suspect that PR broke Spark's Parquet log output redirection. That's the
> premise I'm going by.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]